. 24/7 Space News .
STELLAR CHEMISTRY
Both push and pull drive our galaxy's race through space
by Staff Writers
Jerusalem, Israel (SPX) Jan 31, 2017


Push and pull: the Shapley Attractor and the Dipole Reppeler. Image courtesy Daniel Pomarede.

Although we can't feel it, we're in constant motion: the earth spins on its axis at about 1,600 km/h; it orbits around the sun at about 100,000 km/h; the sun orbits our Milky Way galaxy at about 850,000 km/h; and the Milky Way galaxy and its companion galaxy Andromeda are moving with respect to the expanding universe at roughly 2 million km/h (630 km per second). But what is propelling the Milky Way's race through space?

Until now, scientists assumed that a dense region of the universe is pulling us toward it, in the same way that gravity made Newton's apple fall to earth. The initial "prime suspect" was called the Great Attractor, a region of a half dozen rich clusters of galaxies 150 million lightyears from the Milky Way. Soon after, attention was drawn to an area of more than two dozen rich clusters, called the Shapley Concentration, which sits 600 million lightyears beyond the Great Attractor.

Now researchers led by Prof. Yehuda Hoffman at the Hebrew University of Jerusalem report that our galaxy is not only being pulled, but also pushed. In a new study in the forthcoming issue of Nature Astronomy, they describe a previously unknown, very large region in our extragalactic neighborhood. Largely devoid of galaxies, this void exerts a repelling force on our Local Group of galaxies.

"By 3-d mapping the flow of galaxies through space, we found that our Milky Way galaxy is speeding away from a large, previously unidentified region of low density. Because it repels rather than attracts, we call this region the Dipole Repeller," said Prof.

Yehuda Hoffman. "In addition to being pulled towards the known Shapley Concentration, we are also being pushed away from the newly discovered Dipole Repeller. Thus it has become apparent that push and pull are of comparable importance at our location."

The presence of such a low density region has been suggested previously, but confirming the absence of galaxies by observation has proved challenging. But in this new study, Hoffman, at the Hebrew university's Racah Institutes of Physics, working with colleagues in the USA and France, tried a different approach.

Using powerful telescopes, among them the Hubble Space Telescope, they constructed a 3-dimensional map of the galaxy flow field. Flows are direct responses to the distribution of matter, away from regions that are relatively empty and toward regions of mass concentration; the large scale structure of the universe is encoded in the ?ow ?eld of galaxies.

They studied the peculiar velocities - those in excess of the Universe's rate of expansion - of galaxies around the Milky Way, combining different datasets of peculiar velocities with a rigorous statistical analysis of their properties. They thereby inferred the underlying mass distribution that consists of dark matter and luminous galaxies - over-dense regions that attract and under-dense ones that repel.

By identifying the Dipole Repeller, the researchers were able to reconcile both the direction of the Milky Way's motion and its magnitude. They expect that future ultra-sensitive surveys at optical, near-infrared and radio wavelengths will directly identify the few galaxies expected to lie in this void, and directly confirm the void associated with the Dipole Repeller.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Hebrew University of Jerusalem
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Rapid gas flares discovered in white dwarf star for the first time
Oxford, UK (SPX) Jan 27, 2017
Incredibly rapid gas flares from a white dwarf binary star system have been detected for the first time by Oxford University scientists. The first sighting of such activity, it suggests that our current understanding of star habits and their capabilities is incomplete. The rapid flares, which are extremely powerful, fast variations in brightness, occur when a star releases an enormous amou ... read more


STELLAR CHEMISTRY
Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Progress MS-03 cargo spacecraft to reenter January 31

STELLAR CHEMISTRY
ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

NASA sounding rocket launches into Alaskan night

SmallGEO's first flight reaches orbit

Russia to check space flight engines over faulty parts

STELLAR CHEMISTRY
Meteorite reveals 2 billion years of volcanic activity on Mars

Opportunity marks 13 years of ground operations on Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Commercial Crew's Role in Path to Mars

STELLAR CHEMISTRY
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

STELLAR CHEMISTRY
Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

STELLAR CHEMISTRY
NASA's New Shape-Shifting Radiator Inspired by Origami

Space Traffic Management

Japan 'space junk' collector in trouble

Anatomy of a debris incident

STELLAR CHEMISTRY
New planet imager delivers first science at Keck

Dedicated Planet Imager Opens Its Eyes to Other Worlds

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

STELLAR CHEMISTRY
Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.