Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Biomanufacturing of CdS quantum dots
by Staff Writers
Bethlehem PA (SPX) Jun 28, 2015


Using an engineered strain of Stenotrophomonas maltophilia to control particle size, Lehigh researchers biosynthesized quantum dots using bacteria and cadmium sulfide to provide a route to low-cost, scalable and green synthesis of CdS nanocrystals with extrinsic crystallite size control in the quantum confinement range. The result is CdS semiconductor nanocrystals with associated size-dependent band gap and photoluminescent properties. Image courtesy Linda Nye for Lehigh University. For a larger version of this image please go here.

team of Lehigh University engineers have demonstrated a bacterial method for the low-cost, environmentally friendly synthesis of aqueous soluble quantum dot (QD) nanocrystals at room temperature.

Principal researchers Steven McIntosh, Bryan Berger and Christopher Kiely, along with a team of chemical engineering, bioengineering, and material science students present this novel approach for the reproducible biosynthesis of extracellular, water-soluble QDs in the July 1 issue of the journal Green Chemistry. This is the first example of engineers harnessing nature's unique ability to achieve cost effective and scalable manufacturing of QDs using a bacterial process.

Using an engineered strain of Stenotrophomonas maltophilia to control particle size, the team biosynthesized QDs using bacteria and cadmium sulfide to provide a route to low-cost, scalable and green synthesis of CdS nanocrystals with extrinsic crystallite size control in the quantum confinement range. The solution yields extracellular, water-soluble quantum dots from low-cost precursors at ambient temperatures and pressure. The result is CdS semiconductor nanocrystals with associated size-dependent band gap and photoluminescent properties.

This biosynthetic approach provides a viable pathway to realize the promise of green biomanufacturing of these materials. The Lehigh team presented this process recently to a national showcase of investors and industrial partners at the TechConnect 2015 World Innovation Conference and National Innovation Showcase in Washington, D.C. June 14-17.

"Biosynthetic QDs will enable the development of an environmentally-friendly, bio-inspired process unlike current approaches that rely on high temperatures, pressures, toxic solvents and expensive precursors," Berger says. "We have developed a unique, 'green' approach that substantially reduces both cost and environmental impact."

Quantum dots, which have use in diverse applications such as medical imaging, lighting, display technologies, solar cells, photocatalysts, renewable energy and optoelectronics, are typically expensive and complicated to manufacture. In particular, current chemical synthesis methods use high temperatures and toxic solvents, which make environmental remediation expensive and challenging.

This newly described process allows for the manufacturing of quantum dots using an environmentally benign process and at a fraction of the cost. Whereas in conventional production techniques QDs currently cost $1,000-$10,000 per gram, the biomanufacturing technique cuts that cost to about $1-$10 per gram. The substantial reduction in cost potentially enables large-scale production of QDs viable for use in commercial applications.

"We estimate yields on the order of grams per liter from batch cultures under optimized conditions, and are able to reproduce a wide size range of CdS QDs," said Steven McIntosh.

The research is funded by the National Science Foundation's Division of Emerging Frontiers in Research and Innovation (EFRI Grant No. 1332349) and builds on the success of the initial funding, supplied by Lehigh's Faculty Innovation Grant (FIG) and Collaborative Research Opportunity Grant (CORE) programs.

The Lehigh research group is also investigating, through the NSF's EFRI division, the expansion of this work to include a wide range of other functional materials. Functional materials are those with controlled composition, size, and structure to facilitate desired interactions with light, electrical or magnetic fields, or chemical environment to provide unique functionality in a wide range of applications from energy to medicine.

McIntosh said, "While biosynthesis of structural materials is relatively well established, harnessing nature to create functional inorganic materials will provide a pathway to a future environmentally friendly biomanufacturing based economy. We believe that this work is the first step on this path."

The research was conducted by principal investigators McIntosh, Berger, and Kiely along with Zhou Yang and Victoria F. Bernard of the Department of Chemical and Biomolecular Engineering; as well as Li Lu and Qian He of the Department of Materials Science and Engineering, all from Lehigh. Full article in Green Chemistry


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lehigh University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Designer electronics out of the printer
Munich, Germany (SPX) Jun 22, 2015
They are thin, light-weight, flexible and can be produced cost- and energy-efficiently: printed microelectronic components made of synthetics. Flexible displays and touch screens, glowing films, RFID tags and solar cells represent a future market. In the context of an international cooperation project, physicists at the Technische Universitat Munchen (TUM) have now observed the creation of ... read more


CHIP TECH
Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

CHIP TECH
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

CHIP TECH
Robotic Tunneler May Explore Icy Moons

How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

CHIP TECH
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

CHIP TECH
Curtiss-Wright Awarded Contract By The European Space Agency

Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

CHIP TECH
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

CHIP TECH
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

CHIP TECH
Penn research simplifies recycling of rare-earth magnets

JPL, Caltech Team Up to Tackle Big-Data Projects

Penn researchers develop a new type of gecko-like gripper

Aperiodic crystals and beyond




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.