. 24/7 Space News .
IRON AND ICE
Best of both worlds: asteroids and massive mergers
by Staff Writers
Tucson AZ (SPX) Aug 19, 2019

illustration only

The race is on. Since the construction of technology able to detect the ripples in space and time triggered by collisions from massive objects in the universe, astronomers around the world have been searching for the bursts of light that could accompany such collisions, which are thought to be the sources of rare heavy elements.

The University of Arizona's Steward Observatory has partnered with the Catalina Sky Survey, which searches for near-Earth asteroids from atop Mount Lemmon, in an effort dubbed Searches after Gravitational Waves Using ARizona Observatories, or SAGUARO, to find optical counterparts to massive mergers.

"Catalina Sky Survey has all of this infrastructure for their asteroid survey. So we have deployed additional software to take gravitational wave alerts from LIGO (the Laser Interferometer Gravitational-Wave Observatory) and the Virgo interferometer then notify the survey to search an area of sky most likely to contain the optical counterpart," said Michael Lundquist, postdoctoral research associate and lead author on the study published in the Astrophysical Journal Letters.

"Essentially, instead of searching the next section of sky that we would normally, we go off and observe some other area that has a higher probability of containing an optical counterpart of a gravitational wave event," said Eric Christensen, Catalina Sky Survey director and Lunar and Planetary Laboratory senior staff scientist. "The main idea is we can run this system while still maintaining the asteroid search."

The ongoing campaign began in April, and in that month alone, the team was notified of three massive collisions. Because it is difficult to tell the precise location from which the gravitational wave originated, locating optical counterparts can be difficult.

According to Lundquist, two strategies are being employed. In the first, teams with small telescopes target galaxies that are at the right approximate distance, according to the gravitational wave signal. Catalina Sky Survey, on the other hand, utilizes a 60-inch telescope with a wide field of view to scan large swaths of sky in 30 minutes.

Three alerts, on April 9, 25 and 26, triggered the team's software to search nearly 20,000 objects. Machine learning software then trimmed down the total number of potential optical counterparts to five.

The first gravitational wave event was a merger of two black holes, Lundquist said.

"There are some people who think you can get an optical counterpart to those, but it's definitely inconclusive," he said.

The second event was a merger of two neutron stars, the incredibly dense core of a collapsed giant star. The third is thought to be a merger between a neutron star and a black hole, Lundquist said.

While no teams confirmed optical counterparts, the UA team did find several supernovae. They also used the Large Binocular Telescope Observatory to spectroscopically classify one promising target from another group. It was determined to be a supernova and not associated with the gravitational wave event.

"We also found a near-Earth object in the search field on April 25," Christensen said. "That proves right there we can do both things at the same time."

They were able to do this because Catalina Sky Survey has observations of the same swaths of sky going back many years. Many other groups don't have easy access to past photos for comparison, offering the UA team a leg up.

"We have really nice references," Lundquist said. "We subtract the new image from the old image and use that difference to look for anything new in the sky."

"The process Michael described," Christensen said, "starting with a large number of candidate detections and filtering down to whatever the true detections are, is very familiar. We do that with near-Earth objects, as well."

The team is planning on deploying a second telescope in the hunt for optical counterparts: Catalina Sky Survey's 0.7-meter Schmidt telescope. While the telescope is smaller than the 60-inch telescope, it has an even wider field of view, which allows astronomers to quickly search an even larger chunk of sky. They've also improved their machine learning software to filter out stars that regularly change in brightness.

"Catalina Sky Survey takes hundreds of thousands of images of the sky every year, from multiple telescopes. Our survey telescopes image the entire visible nighttime sky several times per month, then we are looking for one kind of narrow slice of the pie," Christensen said. "So, we've been willing to share the data with whoever wants to use it."

Research Report: "Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): System Overview and First Results from Advanced LIGO/Virgo's Third Observing Run,"


Related Links
University Of Arizona
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Four Candidate Sites Selected for Asteroid Sample Collection
Washington DC (SPX) Aug 13, 2019
After months grappling with the rugged reality of asteroid Bennu's surface, the team leading NASA's first asteroid sample return mission has selected four potential sites for the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft to "tag" its cosmic dance partner. Since its arrival in December 2018, the OSIRIS-REx spacecraft has mapped the entire asteroid in order to identify the safest and most accessible spots for the spacecraft to colle ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Xplore To Send Celestis Memorials to the Moon, and Beyond

India orders Russian equipment for first manned space mission

The first DJ in space

Solar sail craft could revolutionize space travel

IRON AND ICE
Secret Russia weapon project: gamechanger or PR stunt?

Bolton says Russia 'stole' US hypersonic technology

US detect explosion of old European Ariane 4 rocket in space

Chinese space startup to send heavy satellite

IRON AND ICE
Robotic toolkit added to NASA's Mars 2020 Rover

NASA descends on Icelandic lava field to prepare for Mars

Roscosmos postpones joint ESA ExoMars mission after failed parachute tests

Methane not released by wind on Mars, experts find

IRON AND ICE
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

IRON AND ICE
ThinKom Solutions Unveils New Multi-Beam Reconfigurable Phased-Array Gateway Solution for Next-Generation Satellites

OneWeb secures global spectrum further enabling global connectivity services

Embry-Riddle plans expansion of its Research Park through partnership with Space Square

Companies partner to offer a complete solution for space missions as a service

IRON AND ICE
SEAKR reports Canada Patent for Advanced ASIC RF processing technology for satellite applications

Russia proposes self-destroying satellite to resolve space debris problem

Radiation up to '16 times' the norm near Russia blast site

AFRL investigating space weather effects on satellite materials

IRON AND ICE
NASA plans for Webb to zero in on TRAPPIST-1 atmospheres within a year of launch

New "Gold Open Access" Planetary Science Journal Launched

Timeline suggests 'giant planet migration' was earlier than predicted

How astronomers chase new worlds in TESS data

IRON AND ICE
Hubble showcases new portrait of Jupiter

Giant Impact Disrupted Jupiter's Core

Young Jupiter Was Smacked Head-On by Massive Newborn Planet

Jupiter's auroras powered by alternating current









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.