. 24/7 Space News .
Giant Impact Disrupted Jupiter's Core
by Staff Writers
Bern, Switzerland (SPX) Aug 15, 2019

illustration only

New interior models of Jupiter based on data gathered by NASA's Juno mission suggested that the giant gas planet might not have a small compact core but rather a diluted, "fuzzy" one. Now, an international team with researchers of the University of Zu"rich and the NCCR PlanetS has found an explanation for this surprising Juno result. A giant impact occurring shortly after Jupiter's formation may have disrupted and diluted its original compact core.

NASA's Juno probe orbiting Jupiter since July 2016 has not only delivered stunning images but also unexpected results about the interior of the planet. To fit the very accurate gravity data of Jupiter measured by Juno, researchers had to revise their ideas about the planet's core.

"Instead of a small compact core as we previously assumed, Jupiter's core is 'fuzzy,'" explains Ravit Helled. She is professor at the University of Zu"rich, member of the NCCR PlanetS and team member of the Juno mission: "This means that the core is likely not made of only rocks and ices but is also mixed with hydrogen and helium and there is a gradual transition as opposed to a sharp boundary between the core and the envelope."

How come? "One could make the joke and say that when planetary scientists cannot find a solution they invoke a giant impact," says Ravit Helled.

Not a joke, but a good explanation in this case, as an international team with researchers from China, Japan, Switzerland and the US shows in its paper published by the journal "Nature." Lead author Shang-Fei Liu, now professor at Sun Yat-sen University in Zhuhai, China, simulated different collisions between the young Jupiter and planetary embryos.

The results of the computer simulations presented in the paper demonstrate that such a collision actually could have shattered Jupiter's primordial compact core and mixed the heavy elements with the inner envelope. But it needed an enormous impactor 10 times the mass of Earth and the collision had to be head-on.

Simulating Evolution Over Billions of Years
Interested in Liu's research Ravit Helled invited him for a research stay in Zu"rich. Together they wanted to find out whether the diluted core produced by the giant impact could persist over billions of years until today. "For that we used our newly developed planet evolution code," explains the Zu"rich professor.

PhD student Simon Muller had worked on the code as part of his doctoral thesis and he also ran the simulations of Jupiter's evolution. "We are talking about very different timescales," Simon Muller clarifies. "Giant impacts occurred early in the history of the solar system and lasted for a short time, while the evolution is a long process up to today, 4.5 billions of years after Jupiter's formation." These different timescales require separate computational methods for the impact and the thermal evolution.

The Swiss part of the collaboration took the output of the giant impact simulation as an input for the evolution calculation to follow the heat transport and the mixing of heavy elements within the planet. It was shown that, depending on the assumed parameters, there are solutions with a diluted core that persist until today. "That makes the case for the giant impact much stronger," says Ravit Helled. Other co-authors of the study looked at the statistics of the impacts and found out that such a head-on collision with a big impactor seems very likely.

"Everyone had a unique contribution, and this research is remarkably international. So, it was a really nice and rather diverse collaboration," summarizes Ravit Helled: "It seems that such violent impacts were very common in the young solar system and interestingly, they played an important role in shaping the planetary characteristics - not only for Jupiter - as we suggest in this paper - but also for other planets - to explain the Earth's moon, the high metal-to-rock fraction in Mercury, and Uranus' tilt."

Research Report: "The Formation of Jupiter's Diluted Core by a Giant Impact"

Related Links
Planets At The University Of Bern
The million outer planets of a star called Sol

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Young Jupiter Was Smacked Head-On by Massive Newborn Planet
Houston TX (SPX) Aug 15, 2019
A colossal, head-on collision between Jupiter and a still-forming planet in the early solar system, about 4.5 billion years ago, could explain surprising readings from NASA's Juno spacecraft, according to a study this week in the journal Nature. Astronomers from Rice University and China's Sun Yat-sen University say their head-on impact scenario can explain Juno's previously puzzling gravitational readings, which suggest that Jupiter's core is less dense and more extended that expected. "Thi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

The first DJ in space

Solar sail craft could revolutionize space travel

Virgin Galactic unveils new Mission Control for space tourism

Brain games hosted by Keegan-Michael Key will test perceptions with a live audience

Secret Russia weapon project: gamechanger or PR stunt?

Bolton says Russia 'stole' US hypersonic technology

US detect explosion of old European Ariane 4 rocket in space

Chinese space startup to send heavy satellite

Robotic toolkit added to NASA's Mars 2020 Rover

NASA descends on Icelandic lava field to prepare for Mars

Roscosmos postpones joint ESA ExoMars mission after failed parachute tests

Methane not released by wind on Mars, experts find

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

ThinKom Solutions Unveils New Multi-Beam Reconfigurable Phased-Array Gateway Solution for Next-Generation Satellites

Embry-Riddle plans expansion of its Research Park through partnership with Space Square

OneWeb secures global spectrum further enabling global connectivity services

Companies partner to offer a complete solution for space missions as a service

SEAKR reports Canada Patent for Advanced ASIC RF processing technology for satellite applications

Russia proposes self-destroying satellite to resolve space debris problem

Radiation up to '16 times' the norm near Russia blast site

Norway detects radioactive iodine near Russia

New "Gold Open Access" Planetary Science Journal Launched

Timeline suggests 'giant planet migration' was earlier than predicted

How Many Earth-like Planets Are Around Sun-like Stars

NASA plans for Webb to zero in on TRAPPIST-1 atmospheres within a year of launch

Young Jupiter was smacked head-on by massive newborn planet

Young Jupiter Was Smacked Head-On by Massive Newborn Planet

Hubble showcases new portrait of Jupiter

Jupiter's auroras powered by alternating current

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.