Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Beetle-inspired discovery could reduce frost's costly sting
by Staff Writers
Blacksburg VA (SPX) Jan 26, 2016


By controlling the spacing of condensation, researchers were able to control the speed of frost growth across surfaces, or completely prevent frost. The video shows frost spreads more quickly when drops are closer, and the chain reaction is not as quick when the drops are farther apart. Image courtesy Saurabh Nath and Virginia Tech. Watch a video on the research here.

In a discovery that may lead to ways to prevent frost on airplane parts, condenser coils, and even windshields, a team of researchers led by Virginia Tech has used chemical micropatterns to control the growth of frost caused by condensation.

Writing in Scientific Reports, an online journal from the publishers of Nature, the researchers describe how they used photolithography to pattern chemical arrays that attract water over top of a surface that repels water, thereby controlling or preventing the spread of frost.

The inspiration for the work came from an unlikely source - the Namib Desert Beetle, which makes Beetle-inspired discovery could reduce frost's costly stings because it lives in one of the hottest places in the world, yet it still collects airborne water.

The insect has a bumpy shell and the tips of the bumps attract moisture to form drops, but the sides are smooth and repel water, creating channels that lead directly to the beetle's mouth.

"I appreciate the irony of how an insect that lives in a hot, dry desert inspired us to make a discovery about frost," said Jonathan Boreyko, an assistant professor of Biomedical Engineering and Mechanics in the Virginia Tech College of Engineering. "The main takeaway from the Desert Beetle is we can control where dew drops grow."

Working at the Oak Ridge National Laboratory, the researchers developed their beetle-inspired, frost-controlling chemical pattern on a surface only about the size of a centimeter, but they believe the area can be scaled up to large surface areas with thirsty, hydrophilic patterns overtop of a hydrophobic, or water-repellant, surface.

"We made a single dry zone around a piece of ice," Boreyko said. "Dew drops preferentially grow on the array of hydrophilic dots. When the dots are spaced far enough apart and one of the drops freezes into ice, the ice is no longer able to spread frost to the neighboring drops because they are too far away. Instead, the drops actually evaporate completely, creating a dry zone around the ice."

Creating frost-free zones on larger surfaces could have a variety of applications - consider the water that forms and freezes on heat pump coils or the deicing with harsh chemicals that has to take place on wind turbines or airplane wings.

"Keeping things dry requires huge energy expenditures," said C. Patrick Collier, a research scientist at the Nanofabrication Research Laboratory Center for Nanophase Materials Sciences at Oak Ridge National Laboratory and a co-author of the study. "That's why we are paying more attention to ways to control water condensation and freezing. It could result in huge cost savings."

The journey of frost across a surface begins with a single, frozen dew drop, the researchers said.

"The twist is how ice bridges grow," Boreyko said. "Ice harvests water from dew drops and this causes ice bridges to propagate frost across the droplets on the surface. Only a single droplet has to freeze to get this chain reaction started."

By controlling spacing of the condensation, the researchers were able to control the speed frost grows across surfaces, or completely prevent frost.

"Fluids go from high pressure to low pressure," Boreyko said. "Ice serves as a humidity sink because the vapor pressure of ice is lower than the vapor pressure of water. The pressure difference causes ice to grow, but designed properly with this beetle-inspired pattern, this same effect creates a dry zone rather than frost."

A portion of the research was conducted at the Center for Nanophase Materials Sciences, which is a Department of Engineering Office of Science user facility. The Department of Biomedical Engineering and Mechanics at Virginia Tech provided startup support.

.


Related Links
Virginia Tech
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
High-performance material polyimide for the first time with angular shape
Vienna, Austria (SPX) Jan 21, 2016
Polyimides withstand extreme heat and chemically aggressive solvents, while being considerably less dense than metals. That is why they are very popular in industry, for example as an insulation layer on PCBs or in aerospace applications. However, it is precisely their high stability, which makes polyimides very difficult to process. Neither melting nor etching can be used to bring them in ... read more


TECH SPACE
Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

TECH SPACE
Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

Opportunity Welcomes Winter Solstice

TECH SPACE
Arab nations eye China, domestic market to revive tourism

Zinnias from space

Newcomer Sierra Nevada to supply ISS alongside SpaceX, Orbital: NASA

NASA's Scott Kelly unveils first flower grown in space: an orange zinnia

TECH SPACE
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

TECH SPACE
Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Water in US astronaut's helmet cuts short Briton's 1st spacewalk

Roscosmos prepares to launch first manned Soyuz MS

TECH SPACE
EpicNG satellite installed on Ariane 5 for launch

Building a robust commercial market in low earth orbit

NASA awards ISS cargo transport contracts

SpaceX will try to land its reusable rocket on an ocean dock

TECH SPACE
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

TECH SPACE
CSU imaging tool maps cells' composition in 3-D

Gloop from the deep sea

High-performance material polyimide for the first time with angular shape

Copper deposition to fabricate tiny 3-D objects




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.