. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers witness galaxy megamerger
by Staff Writers
Charlottesville VA (SPX) Apr 26, 2018

Artist impression of the 14 galaxies detected by ALMA as they appear in the very early, very distant universe. These galaxies are in the process of merging and will eventually form the core of a massive galaxy cluster.

Peering deep into space - an astounding 90 percent of the way across the observable universe - astronomers have witnessed the beginnings of a gargantuan cosmic pileup, the impending collision of 14 young, starbursting galaxies.

This ancient megamerger is destined to evolve into one of the most massive structures in the known universe: a cluster of galaxies, gravitationally bound by dark matter and swimming in a sea of hot, ionized gas.

Using the Atacama Large Millimeter/submillimeter Array (ALMA), an international team of scientists has uncovered a startlingly dense concentration of 14 galaxies that are poised to merge, forming the core of what will eventually become a colossal galaxy cluster.

This tightly bound galactic smashup, known as a protocluster, is located approximately 12.4 billion light-years away, meaning its light started traveling to us when the universe was only 1.4 billion years old, or about a tenth of its present age.

Its individual galaxies are forming stars as much as 1,000 times faster than our home galaxy and are crammed inside a region of space only about three times the size of the Milky Way. The resulting galaxy cluster will eventually rival some of the most massive clusters we see in the universe today.

The results are published in the journal Nature.

"Having caught a massive galaxy cluster in throes of formation is spectacular in and of itself," said Scott Chapman, an astrophysicist at Dalhousie University in Halifax, Canada, who specializes in observational cosmology and studies the origins of structure in the universe and the evolution of galaxies.

"But, the fact that this is happening so early in the history of the universe poses a formidable challenge to our present-day understanding of the way structures form in the universe," he said.

During the first few million years of cosmic history, normal matter and dark matter began to aggregate into larger and larger concentrations, eventually giving rise to galaxy clusters, the largest objects in the known universe.

With masses comparable to a million billion suns, clusters may contain as many as a thousand galaxies, vast amounts of dark matter, gargantuan black holes, and X-ray emitting gas that reaches temperatures of over a million degrees.

Current theory and computer models suggest that protoclusters as massive as the one observed by ALMA, however, should have taken much longer to evolve.

"How this assembly of galaxies got so big so fast is a bit of a mystery, it wasn't built up gradually over billions of years, as astronomers might expect," said Tim Miller, a doctoral candidate at Yale University and coauthor on the paper.

"This discovery provides an incredible opportunity to study how galaxy clusters and their massive galaxies came together in these extreme environments."

This particular galactic protocluster, designated SPT2349-56, was first observed as a faint smudge of millimeter-wavelength light in 2010 with the National Science Foundation's South Pole Telescope.

Follow-up observations with the Atacama Pathfinder Experiment (APEX) telescope helped confirm that it was in fact an extremely distant galactic source and worthy of follow-up observations with ALMA.

ALMA's superior resolution and sensitivity allowed astronomers to distinguish no fewer than 14 individual objects in a shockingly small region of space, confirming the object was the archetypical example of a protocluster in a very early stage of development.

This cluster's extreme distance and clearly defined components offer astronomers an unprecedented opportunity to study some of the first steps of cluster formation less than 1.5 billion years after the Big Bang.

By using the ALMA data as the starting conditions for sophisticated computer simulations, the researchers were able to demonstrate how this current collection of galaxies will likely grow and evolve over billions of years.

"ALMA gave us, for the first time, a clear starting point to predict the evolution of a galaxy cluster. Over time, the 14 galaxies we observed will stop forming stars and will collide and coalesce into a single gigantic galaxy," said Chapman.


Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Uncovering the secret law of the evolution of galaxy clusters
Osaka, Japan (SPX) Apr 25, 2018
As science enthusiasts around the world bid farewell to legendary cosmologist Stephen Hawking, researchers continue to make important discoveries about the evolution of galaxy clusters that capture the imagination. Now, an international collaboration between Yutaka Fujita at Osaka University and researchers from Taiwan, Italy, Japan, and the United States found a new fundamental law that stipulates the evolution of galaxy clusters. They recently reported the study in The Astrophysical Journal. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
2020 Decadal Survey Missions: At a Glance

NASA upgrades Space Station emergency communications ground stations

Russia develops space sauna and washing machine

'Jedi' calls on Europe to find innovation force

STELLAR CHEMISTRY
China developing reusable space rocket

Meet the nuclear-powered spaceships of the future

Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

Vostochny Cosmodrome preps for first tourist visit

STELLAR CHEMISTRY
Bernese Mars camera CaSSIS sends first colour images from Mars

A Yellowstone guide to life on Mars

ESA and NASA to investigate bringing martian soil to Earth

Opportuity Mars rover looking for a path of less resistance

STELLAR CHEMISTRY
Astronauts eye more cooperation on China's space station

China outlines roadmap for deep space exploration

Across China: Rocket launch brings back fortune to locals

China to launch advanced space cargo transport aircraft in 2019

STELLAR CHEMISTRY
UK may set up satellite program separate from EU

ESA teams ready for space

Aerospace highlights lessons from Public-Private Partnerships in space

Airbus has shipped SES-12 highly innovative satellite to launch base

STELLAR CHEMISTRY
3-D printed food could change how we eat

India recalls GSAT-11 satellite from launch site for more tests

NASA seeks research proposals for space technologies to flight test

Engineers get a grip on slippery surfactants

STELLAR CHEMISTRY
Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

Researchers simulate conditions inside 'super-Earths'

Droids beat astronomers in predicting survivability of exoplanets

STELLAR CHEMISTRY
What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.