. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers unveil 'heart' of Eta Carinae
by Staff Writers
Sao Paulo, Brazil (SPX) Nov 21, 2016


The raging winds from Eta Carinae are much faster and denser than the solar wind streaming off our own Sun. They collide violently in the zone between the two stars at speeds that can reach 10 million km per hour.

An international team of astronomers has imaged the Eta Carinae star system in the greatest detail ever. Eta Carinae is a colossal binary system that consists of two massive stars orbiting each other. It is found almost 8,000 light years from Earth within the Carina Nebula, a giant star-forming region in the Carina-Sagittarius Arm of the Milky Way.

The images enabled the astronomers to observe unexpected new structures in the binary system, including a region between the two stars in which extremely high-velocity stellar winds are colliding.

"With these observations, we were able to map the zone in which the two stellar winds collide and make sure we genuinely understand the basic parameters of the binary system," said Augusto Damineli, Full Professor at the University of Sao Paulo's Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG-USP) in Brazil.

Damineli has studied mysterious phenomena involving Eta Carinae for more than 20 years with FAPESP's support and is one of the three Brazilian authors of the paper published by Astronomy and Astrophysics.

The other two are Mairan Macedo Teodoro, a researcher at NASA's Goddard Space Flight Center, and Jose Henrique Groh de Castro Moura, a professor at Trinity College Dublin in Ireland.

According to the researchers, the Eta Carinae binary pair are so massive and bright that the radiation they produce rips atoms off their surfaces and spews them into space. This expulsion of atomic material is referred to as stellar wind.

The raging winds from Eta Carinae are much faster and denser than the solar wind streaming off our own Sun. They collide violently in the zone between the two stars at speeds that can reach 10 million km per hour.

The combined effect of the two stellar winds as they smash into each other at extreme speeds is to create temperatures of millions of degrees and intense deluges of X-ray radiation.

The central area where the raging winds collide is so comparatively tiny that telescopes in space and on the ground have not been able to image them in detail - until now.

Utilizing an advanced new imaging technique called infrared long baseline interferometry, which combines light beams collected from the same astronomic object by several telescopes to analyze it in great detail, the researchers were able to observe the turbulent collision zone for the first time.

They did this with the Astronomical Multi-Beam Recombiner known as AMBER, an instrument currently installed on the Very Large Telescope Interferometer (VLTI) at the European Southern Observatory's Paranal Facility in Chile's Atacama Desert.

They used three of the VLT's four auxiliary telescopes, each with a diameter of 1.8 m and mounted on tracks so that they can move up to 200 m apart.

Image sharpness increases with telescope separation, so the astronomers were able to achieve a tenfold increase in resolving power compared with one of the VLT array's main telescopes, delivering for the first time direct images 50,000 times finer than human vision of both the wind that swirls around Eta Carinae's primary star and the wind collision zone between the two stars.

Using the Doppler effect, which enables astronomers to calculate precisely how fast stars and other astronomical objects are moving toward or away from Earth, they obtained images of the stellar winds at different velocities, measuring velocities and densities to compare them with a computer model of the collision.

"The images we obtained via the Doppler effect show the stellar winds colliding at different velocities," Damineli said. "So we were able to use them to reconstruct the shape of the walls of the cavity formed by the collision shockwave from its apex to the most distant regions."

The researchers also observed in the images an unexpected fan-shaped structure where the raging wind from the smaller, hotter star crashes into the denser wind from the larger of the pair.

The wind from the secondary star is less dense but much fiercer than the wind from the primary star, reaching velocities of 3,000 km per second, they estimated.

On the basis of these stellar wind velocities, they hope to be able to create more accurate computer models of Eta Carinae's internal structure and increase their understanding of how extremely massive stars lose mass as they evolve.

"Because light from the secondary star is 200-300 times weaker than light from the primary, we couldn't see it directly with AMBER," Damineli said. "We should be able to do so with GRAVITY, a new VLTI instrument due to come on stream soon."

GRAVITY is an interferometric instrument operating in the K band and combining four telescope beams. Its higher resolution will enable the astronomers to obtain interferometric images of astronomic objects with even greater precision and over a wider range of wavelengths.

According to Damineli, they may succeed in tracking Eta Carinae's secondary star from point to point along its 5.5-year orbit and plotting its ellipse.

"When we've done that we'll at last be able to 'weigh' the secondary star. Mass is a star's most fundamental parameter," he said.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Distant star is roundest object ever observed in nature
Gottingen, Germany (SPX) Nov 17, 2016
Stars are not perfect spheres; several mechanisms can change their shape. One mechanism is rotation: the more quickly a star rotates, the more flat it becomes due to the centrifugal force. Since distant stars appear as points in the sky, measuring their shape is a challenging task. A team of researchers led by Prof. Laurent Gizon from the Max Planck Institute for Solar System Research (MPS ... read more


STELLAR CHEMISTRY
Orion Crew Module Adapter Lifted in Processing Facility at NASA's Kennedy Space Center

Expandable Habitat Reveals Important Early Performance Data

Roscosmos Ready to Continue Delivering Mixed Crews to ISS After 2018

NASA on the hunt for space poop geniuses

STELLAR CHEMISTRY
Vega ready for GOKTURK-1A to be encapsulated

Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

SLS propulsion system goes into Marshall stand ahead of big test series

Predictive modeling for NASA's Entry, Descent, and Landing Missions

STELLAR CHEMISTRY
Computer glitch blamed for European Mars lander crash

ESA's new Mars orbiter prepares for first science

NASA field test focuses on science of lava terrains, like Early Mars

Can we grow potatoes on Mars

STELLAR CHEMISTRY
Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

STELLAR CHEMISTRY
Charyk helped chart the course of satellite communications

Intelsat and Intelsat General support hurricane Matthew recovery efforts

Boeing to consolidate defense and space sites

Can India beat China at its game with common satellite for South Asia

STELLAR CHEMISTRY
New solution for making 2-D nanomaterials

NASA microthrusters achieve success on ESA's LISA Pathfinder

Sweden orders new laser simulators from Saab

Calculations predict unexpected disorder in the surface of polar materials

STELLAR CHEMISTRY
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

STELLAR CHEMISTRY
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.