Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



STELLAR CHEMISTRY
Astronomers catch exploding supernova early
by Staff Writers
Tucson AZ (SPX) Aug 16, 2017


Simulation of a Type Ia supernova in which material ejected from the explosion (red) runs into a companion star (blue). This collision adds extra ultraviolet light to the supernova as viewed from Earth. Image courtesy Dan Kasen.

For the first time, astronomers have observed a cosmic event in great detail that they only had glimpses of before: a supernova and its explosive ejecta slamming into a nearby companion star. The discovery was made possible by a specialized survey taking advantage of recent advances in linking telescopes across the globe into a robotic network.

David Sand, an assistant professor at the University of Arizona, discovered the supernova on March 10, 2017, in the galaxy NGC 5643. At 55 million light-years, it was one of the closest supernovae discovered in recent years. Designated SN 2017cbv, it was found by the DLT40 survey, which stands for "Distance Less Than 40 Megaparsecs" or 120 million light-years. The survey uses the PROMPT telescope in Chile, which monitors roughly 500 galaxies nightly.

"This was one of the earliest catches ever - within a day, perhaps even hours, of its explosion," said Sand, who created the DLT40 survey together with Stefano Valenti, an assistant professor at the University of California, Davis. Both were previously postdoctoral researchers at Las Cumbres Observatory, or LCO.

Dead Stars Go Thermonuclear
Within minutes of discovery, Sand activated observations with LCO's global network of 18 robotic telescopes. They are spaced around the globe so that there is always one on the night side of the Earth, ready to conduct astronomical observations. This allowed the team to take immediate and near-continuous observations.

SN 2017cbv is a thermonuclear (Type Ia) supernova, the kind astronomers use to measure the acceleration of the expansion of the universe. Type Ia supernovae are known to be the explosions of white dwarfs, the dead cores of what used to be normal stars.

Across the cosmic abyss, a supernova tells of its existence by appearing like a star that wasn't there before. Its brightness peaks within a matter of days to weeks and then slowly fades over weeks or months.

"To turn into a Type Ia supernova, a white dwarf can't be by itself," explained Sand, the principal investigator of the DLT40 survey. "It has to have some kind of companion, and we are trying to figure out what that companion is."

The identity of this companion has been hotly debated for more than 50 years.

The prevailing theory over the last few years is that the supernovae happen when two white dwarfs spiral in toward each other and merge in a cataclysmic explosion. The other scenario involves a normal star that is not a white dwarf.

Key to the observations reported in this study is a small bump in the light curve emitted by SN 2017cbv within the first three to four days, a feature that would have been missed were it not for the almost instantaneous reaction times that are the hallmark of the DLT40 survey: a fleeting blue glow from the interaction at an unprecedented level of detail, revealing the surprising identity of the mysterious companion star.

"We think what happened here was likely scenario number two," Sand said. "The bump in the light curve could be caused by material from the exploding white dwarf as it slams into the companion star."

This study infers that the white dwarf was stealing matter from a much larger companion star, approximately 20 times the radius of the sun. This caused the white dwarf to explode, and the collision of the supernova with the companion star shocked the supernova material, heating it to a blue glow that was heavy in ultraviolet light. Such a shock could not have been produced if the companion were another white dwarf star, the study's authors say.

"We've been looking for this effect - a supernova crashing into its companion star - since it was predicted in 2010," said Griffin Hosseinzadeh, a doctoral student at the University of California, Santa Barbara, who led the study, which is soon to be published in The Astrophysical Journal Letters. "Hints have been seen before, but this time the evidence is overwhelming. The data are beautiful!

"With Las Cumbres Observatory's ability to monitor the supernova every few hours, we were able to see the full extent of the rise and fall of the blue glow for the first time," he added. "Conventional telescopes would have had only a data point or two and missed it."

Eighteen telescopes, spread over eight sites around the world, form the heart of the Las Cumbres Observatory. At any given moment, it is nighttime somewhere in the network, which ensures that a supernova can be observed without interruption.

Cosmology's '60-Watt Lightbulb'

Because of their uniform brightness, Type Ia supernovae are akin to a "standard 60-watt lightbulb for cosmology," and scientists use them as yard sticks to measure distances across the universe.

On average, only one supernova goes off over the course of a century in a galaxy like our Milky Way, according to Sand. Add to that their fleeting nature, and it becomes clear why a targeted observational campaign such as the DLT40 survey and an automated network of observatories such as the LCO are critical to their discovery and study. Funded by the National Science Foundation, The DLT40 survey started in October 2016 and is scheduled to continue over the next three years.

"The secret sauce to this are the connected telescopes of the Las Cumbres Observatory," Sand said, adding that the survey is not about quantity. "We rather focus on a precious few than hundreds of them."

It is likely that Type Ia supernovae come from both types of progenitor systems - two white dwarfs or one white dwarf and a "normal" interacting star - and the goal of these studies is to figure out which of the two processes is more common, Sand explained.

"Observing supernovae such as SN 2017cbv is an important step in this direction," he said. "If we get them really young, we can get a better idea of these processes, which hold implications for our understanding of the cosmos, including dark energy."

STELLAR CHEMISTRY
Scientists probe the conditions of stellar interiors to measure nuclear reactions
Livermore CA (SPX) Aug 09, 2017
Most of the nuclear reactions that drive the nucleosynthesis of the elements in our universe occur in very extreme stellar plasma conditions. This intense environment found in the deep interiors of stars has made it nearly impossible for scientists to perform nuclear measurements in these conditions - until now. In a unique cross-disciplinary collaboration between the fields of plasma phys ... read more

Related Links
University of Arizona
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
SpaceX launches super-computer to space station

NASA: let's say something to Voyager 1 on 40th anniversary of launch

Disruptioneering: Streamlining the Process of Scientific Discovery

NASA Offers Space Station as Catalyst for Discovery in Washington

STELLAR CHEMISTRY
SHIIVER tank arrives at NASA's Marshall Center for spray-on foam insulation

Russia's S7 group plans to resume Zenit launches from Sea Launch platform

SpaceX launches super-computer to space station

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

STELLAR CHEMISTRY
Curiosity watches Martian clouds pass over Gale Crater

Opportunity takes in the panoramic view while crossing some rocky terrain

Preserving the stress of volcanic uprise on Mars

For Moratorium on Sending Commands to Mars, Blame the Sun

STELLAR CHEMISTRY
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

STELLAR CHEMISTRY
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Lockheed Martin invests $350M in state-of-the-art satellite production facility

Airbus DS to expand cooperation with Russia

STELLAR CHEMISTRY
Archinaut Project conducts first large-scale 3D build in space-like environment

Nature provides a key to repelling liquids

Heat-conducting plastic could lead to lighter electronics, cars

Scientists watch 'artificial atoms' assemble into perfect lattices with many uses

STELLAR CHEMISTRY
Tidally locked exoplanets may be more common than previously thought

TRAPPIST-1 twice as old as our solar system

Deep-sea animals eating plastic fibers from clothing

A New Search for Extrasolar Planets from the Arecibo Observatory

STELLAR CHEMISTRY
Scientists probe Neptune's depths to reveal secrets of icy planets

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement