. 24/7 Space News .
EARLY EARTH
Are the blueprints for limbs encoded in the snake genome
by Staff Writers
Washington DC (SPX) Oct 07, 2015


Anolis lizard embryo expression of the hindlimb/phallus gene Tbx4 (purple stain). Image courtesy Carlos R. Infante. For a larger version of this image please go here.

Hundreds of millions of years ago, a common ancestor of mammals, birds, and reptiles evolved a phallus. We don't know much about phallus evolution (external genitalia generally don't mineralize, so the fossil record is of little help), but we can compare the expression of phallus genes from organism to organism. From such work, we've learned that many of the genes deployed in the developing phallus are also used to build limbs during embryonic development.

The shared patterns of gene expression in the limbs and phallus are generated in part by a common set of noncoding DNA, also called "elements" or "enhancers," which act to control gene expression in both of these structures, argues a study published October 1 in Developmental Cell. These conclusions stemmed from an initial observation that many limb control elements, or limb enhancers, found in limbed animals are still present in snake genomes.

"From purely looking at the DNA sequences we can conclude that snakes retain many enhancers that, based on mammalian studies, we thought were limb enhancers," says senior study author Douglas Menke, a geneticist at the University of Georgia. "There have been tens of millions of generations for these elements to be lost, but the fact that these are still present in snakes prompted us to rethink what these limb enhancers are doing in snakes and mice."

Menke and postdoctoral researcher Carlos Infante examined patterns of enhancer activity in embryonic limbs and genitalia of mice and limbed reptiles (anole lizards). This revealed that many of the same enhancers are activated during the formation of these different appendages in both species.

When the authors tested the ability of the lizard and snake versions of this limb-genital enhancer to function in mice, they found that the lizard version was capable of driving gene expression in the legs and the genitalia (much like the mouse version), while the snake version was only capable of driving gene expression in the genitalia.

The conclusion is that many of these noncoding regions of DNA should be more broadly categorized as "appendage enhancers" rather than "limb enhancers," and snakes may have retained these noncoding DNA elements due to their role in phallus development.

Menke had access to the genomes of three snake species for his study: boa constrictor, Burmese python, and king cobra. Comparative genomics research like this has only been possible in the past couple of years as the genome sequences of snakes and other species have become available.

One of the next steps will be to investigate how much of a role noncoding DNA plays in the formation of different genital shapes that are observed in nature, from the dual hemiphalluses found in lizards and snakes to the diversity of morphologies observed among the phalluses of mammalian species.

Developmental Cell, Infante et al.: "Shared Enhancer Activity in the Limbs and Phallus and Functional Divergence of a Limb-Genital cis-Regulatory Element in Snakes"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cell Press
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Stability of surviving communities increases following mass extinction
Washington DC (SPX) Oct 07, 2015
By using fossil data, researchers have found that the structure of ecological communities leading up to the Permian-Triassic Extinction, one of the largest drivers of biodiversity loss in history, is a key predictor of the ecological communities that would demonstrate stability through the event. As we are confronted with the reality of modern day mass extinction, identifying factors that ... read more


EARLY EARTH
Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

EARLY EARTH
MRO imagery reveals Red Planet's stressed substrate

Geology Award Going to Mars Landing Site Expert at JPL

Terraforming the Red Planet: Nuclear Blasts Could Warm Mars for Humans?

NASA Lays the Groundwork for Homesteading in Space

EARLY EARTH
Selected NASA Discovery Missions Include Three With PSI Ties

NASA Selects Investigations for Future Key Planetary Mission

Chinese herbal expert among Nobel medicine prize winners

Down to Earth and walking the line

EARLY EARTH
Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

China launches new type of carrier rocket: state media

EARLY EARTH
Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

Russian launches cargo spaceship to the ISS

Successful re-entry of H-II Transfer Vehicle Kounotori5

EARLY EARTH
Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

45th Space Wing supports ULA's 100th launch

EARLY EARTH
The Most Stable Source of Light in the World

Earth-class planets likely have protective magnetic fields, aiding life

Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

EARLY EARTH
Caution: Shrinks when warm

Flipping molecular attachments amps up activity of CO2 catalyst

New system allows heightened purity of a metal binding compound

Redefining temperature with precision lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.