. 24/7 Space News .
ICE WORLD
Antarctic sea ice melt released carbon from oceans as ice age ended
by Staff Writers
Cambridge, UK (SPX) Jan 05, 2016


A new study of how the structure of the ocean has changed since the end of the last ice age suggest that the melting of a vast 'lid' of sea ice caused the release of huge amounts of carbon dioxide into the atmosphere. Image courtesy Jenny Roberts. For a larger version of this image please go here.

A new study reconstructing conditions at the end of the last ice age suggests that as the Antarctic sea ice melted, massive amounts of carbon dioxide that had been trapped in the ocean were released into the atmosphere.

The study includes the first detailed reconstruction of the Southern Ocean density of the period and identified how it changed as the Earth warmed. It suggests a massive reorganisation of ocean temperature and salinity, but finds that this was not the driver of increased concentration of carbon dioxide in the atmosphere. The study, led by researchers from the University of Cambridge, is published in the journal Proceedings of the National Academy of Sciences.

The ocean is made up of different layers of varying densities and chemical compositions. During the last ice age, it was thought that the deepest part of the ocean was made up of very salty, dense water, which was capable of trapping a lot of CO2. Scientists believed that a decrease in the density of this deep water resulted in the release of CO2 from the deep ocean to the atmosphere.

However, the new findings suggest that although a decrease in the density of the deep ocean did occur, it happened much later than the rise in atmospheric CO2, suggesting that other mechanisms must be responsible for the release of CO2 from the oceans at the end of the last ice age.

"We set out to test the idea that a decrease in ocean density resulted in a rise in CO2 by reconstructing how it changed across time periods when the Earth was warming," said the paper's lead author Jenny Roberts, a PhD student in Cambridge's Department of Earth Sciences who is also a member of the British Antarctic Survey. "However what we found was not what we were expecting to see."

In order to determine how the oceans have changed over time and to identify what might have caused the massive release of CO2, the researchers studied the chemical composition of microscopic shelled animals that have been buried deep in ocean sediment since the end of the ice age. Like layers of snow, the shells of these tiny animals, known as foraminifera, contain clues about what the ocean was like while they were alive, allowing the researchers to reconstruct how the ocean changed as the ice age was ending.

They found that during the cold glacial periods, the deepest water was significantly denser than it is today. However, what was unexpected was the timing of the reduction in the deep ocean density, which happened some 5,000 years after the initial increase in CO2, meaning that the density decrease couldn't be responsible for releasing CO2 to the atmosphere.

"Before this study there were these two observations, the first was that glacial deep water was really salty and dense, and the second that it also contained a lot of CO2, and the community put two and two together and said these two observations must be linked," said Roberts. "But it was only through doing our study, and looking at the change in both density and CO2 across the deglaciation, that we found they actually weren't linked. This surprised us all."

Through examination of the shells, the researchers found that changes in CO2 and density are not nearly as tightly linked as previously thought, suggesting something else must be causing CO2 to be released from the ocean.

Like a bottle of wine with a cork, sea ice can prevent CO2-rich water from releasing its CO2 to the atmosphere. The Southern Ocean is a key area of exchange of CO2 between the ocean and atmosphere. The expansion of sea ice during the last ice age acted as a 'lid' on the Southern Ocean, preventing CO2 from escaping. The researchers suggest that the retreat of this sea ice lid at the end of the last ice age uncorked this vintage CO2, resulting in an increase in carbon dioxide in the atmosphere.

"Although conditions at the end of the last ice age were very different to today, this study highlights the importance that dynamic features such as sea ice have on regulating the climate system, and emphasises the need for improved understanding and prediction as we head into our ever warming world," said Roberts.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
An ice core study to determine the timing and duration of historical climate stages
Tokyo, Japan (SPX) Dec 30, 2015
Ice core records are rich archives of the climate history during glacial-interglacial cycles over timescales of up to ~800 kyr before the current age. In ice core studies, the accurate and precise dating of the core samples is a central issue that must be investigated to better constrain the timing, sequence, and duration of past climatic events. To help solve this issue, two deep ice core ... read more


ICE WORLD
Rare full moon on Christmas Day

LADEE Mission Shows Force of Meteoroid Strikes on Lunar Exosphere

XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

ICE WORLD
NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

Marshall: Advancing the technology for NASA's Journey to Mars

Opportunity positioned on steeper slopes for another Martian winter

ICE WORLD
Astronauts Tour Future White Room, Crew Access Tower

ISRO's year in review 2015

Celebrity chefs create gourmet delights for astronauts

15 in '15: NASA's Commercial Crew Program Moves Closer to Flight

ICE WORLD
Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

ICE WORLD
NASA Delivers New Video Experience On ISS

British astronaut dials wrong number on Xmas call from space

Space Station Receives New Space Tool to Help Locate Ammonia Leaks

Two whacks is all it takes for spacewalk repair

ICE WORLD
45th Space Wing launches ORBCOMM; historically lands first stage booster

SpaceX rocket landing opens 'new door' to space travel

NASA orders second Boeing Crew Mission to ISS

ESA and Arianespace ink James Webb Space Telescope launch contract

ICE WORLD
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

ICE WORLD
Chameleons deliver powerful tongue-lashing

UCLA researchers create exceptionally strong and lightweight new metal

Coulomb blockade in organic conductors found, a world first

Adjustable adhesion power









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.