. 24/7 Space News .
EARLY EARTH
Antarctic Microbes Hold Clue to Earth's Oxygen
by Charles Q. Choi for Astrobiology Magazine
Moffett Field CA (SPX) Jan 21, 2016


The green microbial mat produces an "oxygen oasis" under anoxic water. The two red spots are laser pointers separated by 3 cm. The various colors represent different microbes with various pigments, some for harvesting light for photosynthesis. Image courtesy Tyler Mackey.

At the bottom of an icy Antarctic lake, a thin, slimy layer of bright green microbes is generating a tiny oasis of oxygen that might give a picture of what early Earth looked like before oxygen became common in the atmosphere. These findings could shed light on the ways scientists might detect evidence of oxygen, a potential sign of life, on distant planets, researchers said.

Nowadays, oxygen comprises about a fifth of Earth's atmosphere. However, in our planet's early history oxygen was much rarer. It wasn't until about 2.4 billion years ago that oxygen for the first time filled Earth's primordial atmosphere in what scientists call the Great Oxidation Event.

The oxidation of Earth's atmosphere and oceans, evidence of which has been seen in ancient rocks, is the biggest chemical change on the surface of the Earth that scientists have ever detected, said Dawn Sumner, a geobiologist at the University of California, Davis.

Prior research suggests this spike in oxygen levels was probably due to the advent of photosynthesizing cyanobacteria - microbes that can fuel their lives by turning solar energy into chemical energy. These bacteria were probably the first producers of oxygen on Earth, generating the gas as a byproduct of photosynthesis.

But the microbes that first dominated the Earth found oxygen poisonous, and the Great Oxidation Event forced these microorganisms to develop ways to deal with oxygen or perish. The survivors not only evolved to withstand oxygen, but they even figured out how to use the gas to release energy, just as fires depend on oxygen to help them unlock energy from wood and other fuels.

"Oxygen is really critical to the survival and evolution of animal life," Sumner said. "The oxygen provides huge amounts of energy through respiration. A lot of my work has been spent understanding the process of the oxidation of Earth, in part to understand how we got here."

It is unclear the precise steps in which oxygen came to fill Earth's atmosphere. Scientists have speculated that cyanobacteria at the time may have created "oxygen oases" - isolated areas where oxygen was abundant before it became widespread across the globe - starting as far back as 2.8 billion years ago (400 million years before the Great Oxidation Event).

Scientists have now found what may be the first known modern example of these long-lost oxygen oases.

They investigated Lake Fryxell in the McMurdo Dry Valleys of Antarctica, and detailed their findings in the October issue of the journal Geology.

"When it comes to research in Antarctica, you don't know what you're going to find," said Sumner, who is lead author on the paper. "You keep an open mind, and discover new things that you never would have predicted. It's a lot like exploring space."

Lake Fryxell is permanently covered in ice 13 to 16 feet thick. To explore the lake, Sumner and her team typically drill a hole about 7 inches in diameter through the ice, then put down a copper pipe pumped with heated antifreeze to melt the hole larger enough for divers to get through to study the microbes beneath.

"Large animals are extinct in Antarctica because of the glaciation there and its isolation from other continents, so by looking at these lakes, we can look back to a time when ecology on Earth lacked large animals," Sumner said.

Furthermore, she believes such hearty microorganisms may be similar to the first forms of life that appeared on newborn Earth when it was much less hospitable, and perhaps on distant planets as well.

"By having a better understanding of the early Earth, we can create better models of other places in the Solar System and the Universe," Sumner said.

The lakes of the Dry Valleys typically contain oxygen in their upper layers, but are anoxic - meaning they have little to no oxygen - farther down. Lake Fryxell is unusual because it becomes anoxic at depths of 9.8 meters, where light still penetrates.

During dives of more than 10.2 meters, below Lake Fryxell's oxygen zone, ecologist Ian Hawes at the University of Canterbury in New Zealand and geobiologist Tyler Mackey at the University of California, Davis, noticed bright green mats on the lakebed.

Anne Jungblut, a microbiologist at the Natural History Museum in London, identified the microbes in these benthic mats as cyanobacteria. Green pigments such as chlorophyll are key to photosynthesis, and the scientists found these microbes generated thin layers of oxygen just one to two millimeters thick on top of these benthic mats.

"This discovery was not at all something we were looking for," Sumner said. "It was a serendipitous find."

The cyanobacteria in these benthic mats photosynthesize slowly because only a little light makes it down to the lake bottom. Still, the scientists found that oxygen production seasonally exceeds oxygen consumption and the loss of the gas to the surrounding environment. Oxygen accumulates within the mats during the long days of the Antarctic summer, when the amount of sunlight they receive peaks.

The researchers suggest these mats could have generated oxygen oases, and as these mats spread across the planet, they eventually triggered the Great Oxidation Event.

As a next step, the researchers want to return to Lake Fryxell to study how the oxygen-producing bacteria survive the long, dark winter and the how the chemistry changes when the sunlight returns for the long summer.

"Understanding how oxygen is produced and consumed there can help us make better models of the early Earth," Sumner said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Diamonds used to 'probe' ancient Earth
Johannesburg, South Africa (SPX) Jan 20, 2016
Diamonds dug up from ancient rock formations in the Johannesburg area, between 1890 and 1930 - before the industrialisation of gold mining - have revealed secrets of how the Earth worked more than 3.5 billion years ago. The three diamonds, which were extracted from the 3 billion-year-old Witwatersrand Supergroup - the rock formation that is host to the famous Johannesburg gold mines - were ... read more


EARLY EARTH
Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

EARLY EARTH
Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

Opportunity Welcomes Winter Solstice

EARLY EARTH
Zinnias from space

Engineers Mark Completion of Orion's Pressure Vessel

NASA's Scott Kelly unveils first flower grown in space: an orange zinnia

How mold on Space Station flowers is helping get us to Mars

EARLY EARTH
China aims for the Moon with new rockets

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China shoots for first landing on far side of the moon

China Plans More Than 20 Space Launches in 2016

EARLY EARTH
Water in US astronaut's helmet cuts short Briton's 1st spacewalk

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Roscosmos prepares to launch first manned Soyuz MS

EARLY EARTH
Building a robust commercial market in low earth orbit

EpicNG satellite installed on Ariane 5 for launch

NASA awards ISS cargo transport contracts

SpaceX will try to land its reusable rocket on an ocean dock

EARLY EARTH
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

EARLY EARTH
NASA's Van Allen Probes Revolutionize View of Radiation Belts

NASA Chooses Avere to Launch its Data onto the AWS Cloud

Single molecule detection of contaminants, explosives or diseases

Bridging the Bio-Electronic Divide









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.