. 24/7 Space News .
STELLAR CHEMISTRY
An Oasis in the brown dwarf desert - astronomers surprised, relieved
by Jordan Raddick
New York NY (SPX) Apr 07, 2016


The "before" and "after" comparison of the number of known brown dwarfs orbiting other stars. For each of the 41 close-in brown dwarf companions detected previously, the left panel shows the distance to its host star. The right panel shows the 112 brown dwarfs discovered in the new study. In both panels, the sizes of the brown dwarfs indicate their masses, and the circle shows the distance to Earth's orbit. The larger dot (yellow or red) in the center of each panel represents the host star (not to scale). All the companions were discovered in different systems; they are shown together for comparison only.

A new paper published this month in The Astronomical Journal by astronomers from the Sloan Digital Sky Survey (SDSS) reports a wellspring of new brown dwarf stellar companions, throwing cold water on the entire idea of the "brown dwarf desert," the previously mystifying lack of these sub-stellar objects around stars.

Most stars in our Galaxy have a traveling companion. Often, these companions are stars of similar mass, as is the case for our nearest stellar neighbors, the triple star system Alpha Centauri. Our Sun, of course, has companions of its own - the planets of our Solar System. Planetary companions are vastly different from stellar companions: they are much smaller, and they do not shine with their own light created through nuclear fusion. Even the largest planet in our Solar System, Jupiter, would need to be 80 times more massive to even begin to shine this way.

Stuck in the middle are "brown dwarfs," much bigger than Jupiter but still too small to be shining stars. These brown dwarfs give off merely a dim glow as they slowly cool. The Universe is full of stars, and now we know that it is full of planets too. Astronomers expected that the Universe would also be teeming with brown dwarfs.

But strangely, that's not what they had been finding. Although astronomers have found plenty of brown dwarfs floating through space on their own, they found very few as stellar companions. Even in recent years, as new and sensitive detection techniques have allowed them to discover thousands of extrasolar planets, brown dwarfs have remained elusive - in spite of the fact that they should be easier to find than planets.

In fact, until recently, so few brown dwarfs have been found orbiting close to other stars that astronomers refer to the phenomenon as the "brown dwarf desert." This in turn created a problem for theorists, who have been scrambling to explain why astronomers have found so few. Therefore when SDSS astronomers started sifting through their data looking for brown dwarf companions to stars, they were hoping not to come up completely dry.

"We were shocked to find that so many of the stars in our sample have close-orbiting brown dwarf companions," says Nick Troup of the University of Virginia, lead author of the paper. "We never expected to triple the total number of known brown dwarf companions with only a few years' worth of observations."

The team's success is due to an unlikely tool in the race to find low-mass stellar companions. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) was designed as a substantial survey of stars in our Milky Way to make a large-scale map of their motions and chemical compositions. But the instrument built for the APOGEE project is so sensitive to small stellar motions that companions orbiting these stars can be detected with APOGEE data.

When an object orbits a star, it tugs at it, causing the star to move on a little orbit of its own. For example, Jupiter tugs on the Sun enough to make it wobble around in space by more than its own diameter. To a distant observer, this wobble can be detected - and the mass of the tugging object can be determined - through changes in the motion of the star.

This motion is seen through the Doppler effect, the same phenomenon that is the basis of the patrol officer's speed gun and the meteorologist's Doppler radar rain map. While APOGEE was designed to measure the grand motions of stars speeding around the Galaxy, it was never intended to do so at the subtle precisions needed to detect the much tinier wobbles induced by small sub-stellar companions.

"This level of precision was a serendipitous bonus of the design of the APOGEE spectrograph", says John Wilson, University of Virginia astronomer and leader of the APOGEE instrument team.

"The entire instrument has to be contained in a giant steel vessel in a vacuum at -320 degrees F, otherwise the instrument's own heat would swamp the infrared signals from the stars."

It turns out that this tightly controlled environment makes it possible to use the APOGEE instrument to measure Doppler shifts reliably over the course of months or years, a feat not achievable by many other spectrographs.

"Even with the first data obtained a few years ago, it was clear that we could use APOGEE to detect the motions of planet-sized objects around our target stars," says David Nidever of the University of Arizona and the Large Synoptic Survey Telescope, who was responsible for writing much of the software that measures the Doppler motions in APOGEE spectra. "It definitely opened our eyes to the possibilities of doing a more systematic search for planets and brown dwarfs."

To undertake such a search, the team started with the 150,000 stars that APOGEE had observed. The astronomers winnowed that collection of stars down to a "prime sample" of about four hundred representing the best examples of stars with companions in the APOGEE data.

Among these, they identified about 60 stars with evidence for planetary-mass candidates, which was already exciting. But the real surprise came with the researchers' extraordinary haul of 112 brown dwarf candidates - twice as many than had been found in the previous 15 years.

Why has the APOGEE team been so lucky in finding this oasis of brown dwarfs? Troup thinks it may have to do with the types of host stars that they are looking at. "Most people doing planet searches have been interested in finding the next Earth, so they've focused their efforts on stars similar to the Sun," Troup says. "But we had to work with the stars that APOGEE surveyed, which are mostly giant stars."

The reasons why brown dwarf companions are more common around giant stars is just one of many new questions raised by this new study that the Sloan team is investigating. And the team will continue to test their results with the ever-growing flow of APOGEE data.

"It's completely unprecedented that this many brown dwarf companions have been found at once, so we are anxious to see if the trend persists as the APOGEE sample grows to several times larger," Troup said.

But for now, it looks like the brown dwarf desert might be a mirage after all.

Research paper: "Companions to APOGEE stars. I. A Milky Way-spanning catalog of stellar and substellar companion candidates and their diverse hosts." Astronomical Journal, 151(3), 85-109, doi:10.3847/0004-6256/151/3/85, arxiv.org/abs/1601.00688.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Sloan Digital Sky Survey
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Magnetar could have boosted explosion of extremely bright supernova
Tokyo, Japan (SPX) Mar 28, 2016
Calculations by scientists have found highly magnetized, rapidly spinning neutron stars called magnetars could explain the energy source behind two extremely unusual stellar explosions. Stellar explosions known as supernovae usually shine a billion times brighter than the Sun. Super-luminous supernovae (SLSNe) are a relatively new and rare class of stellar explosions, 10 to 100 times brigh ... read more


STELLAR CHEMISTRY
The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

STELLAR CHEMISTRY
Help keep heat on Mars Express through data mining

Scientists find Mars surface replica in India

Ancient Mars bombardment likely enhanced life-supporting habitat

Rover takes on steepest slope ever tried on Mars

STELLAR CHEMISTRY
Silicon Beach: LA tech hub where the sun always shines

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

Space-Related Budget Requests for FY17

STELLAR CHEMISTRY
Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

STELLAR CHEMISTRY
Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

STELLAR CHEMISTRY
Atlas V OA-6 Anomaly Status

NASA Progresses Toward SpaceX Resupply Mission to Space Station

Reusing Falcon 9 boosters would slash costs by 30 percent

Water System Tested on Crew Access Arm at KSC

STELLAR CHEMISTRY
Planet formation in Earth-like orbit around a young star

NASA's Spitzer Maps Climate Patterns on a Super-Earth

'Smoothed' light will help search for Earth's twins

Map of rocky exoplanet reveals a lava world

STELLAR CHEMISTRY
Record-breaking steel could be used for body armor, shields for satellites

New understanding of liquid to solid state transition discovered

Physicists 'undiscovered' technetium carbide

Drexel rolls out method for making the invisible brushes that repel dirt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.