. 24/7 Space News .
STELLAR CHEMISTRY
Alternative stellar lifestyle: Common, curious, solved at last
by Staff Writers
Madison WI (SPX) Dec 09, 2015


Birth of a blue straggler star. Left: A normal star in a binary system gravitationally pulls in matter from an aging companion star that has swelled to a bloated red giant that is a few hundred times its original size. Right: After a couple hundred million years, the red giant star has burned out and collapsed to the white dwarf that shines intensely in ultraviolet wavelengths. The companion star has bulked up on hydrogen siphoned from the red giant to become much hotter, brighter and bluer. Image courtesy NASA/ESA, A. Feild (STScI). For a larger version of this image please go here.

Starting around 1950, a series of advances formed a clear and accepted picture of how individual stars are born, evolve and die. As they age, the changing patterns of color, light output, size and lifespan of stars are predictable. Every star like the sun will become a red giant, a planetary nebula and finally a white dwarf.

But half of all stars are in binaries - pairs of stars that orbit each other. Half of binary stars orbit so close that gravitational interaction significantly affects their evolution and demise. Today, scientists led by Robert Mathieu, a professor of astronomy at the University of Wisconsin-Madison, and his former student Natalie Gosnell confirmed one of the possible explanations for a common group of exceptions: the blue stragglers.

Blue stragglers look younger and brighter than their age would suggest - skirting, in other words, the clean, clear rules of stellar evolution. Since their discovery in 1953, blue stragglers have been begging for explanation. Had two stars collided to form a more massive star? Was a blue straggler "stealing" gas from a companion star?

In recent years, based on observations at the WIYN telescope at Kitt Peak, Arizona, Mathieu and his students have established that over three-quarters of blue stragglers, in fact, have stellar companions.

This week, in a paper in The Astrophysical Journal, Gosnell, Mathieu and colleagues identified the orbital partner that was parasitized by the blue straggler. The victim, they found, was a red giant that donated hydrogen gas for eons until it was eventually transformed into a white dwarf - the old, small, bright and dense remnant of a red giant.

The researchers used the Hubble Space Telescope to study the "colors" of far ultraviolet light coming from blue stragglers and their companions. At a distance of 5,500 light years, the blue straggler binary appears as a single point of light, but by analyzing the amount of ultraviolet light, the researchers saw the unmistakable signal of a white dwarf.

The study builds on a series of logical deductions. The stars being studied were identified as members of a binary pair because they periodically move closer to and further from Earth - the hallmark of an orbiting pair of stars. Their optical color and intensity marked them as blue stragglers. They are bright in the far ultraviolet, a trademark of a hot white dwarf. And finally, for the white dwarfs to still be hot and detectable, they can only be 300 million years old. "These blue stragglers were formed 'yesterday,'" says Mathieu.

White dwarfs form when certain stars lose their outer atmospheres. The mass "must be going somewhere," Gosnell says, "and that's to the companion normal star, which is close enough to attract the mass through gravity. Therefore, the white dwarf is left over after adding mass to a star, which becomes the blue straggler."

The study expands our understanding of a major area of stellar evolution. If half of all stars are in binaries, and half of the binaries are, like the blue straggler, close enough to have gravitational interaction, then "these stars are not just an afterthought, a contaminant to our neat picture," Gosnell says. "We need to bring this 25 percent of all stars into the fold, so we can say we really understand how stars evolve."

If scientists don't know how the blue stragglers formed, they are in a poor position to understand how they will evolve and die, adds Gosnell, who is now a postdoctoral fellow at the University of Texas. "Of course, we still have a third of the blue stragglers to figure out. I think we also have some stellar collisions in there."

"Our understanding of single-star evolution is one of the great intellectual achievements of the last century," says Mathieu. "We began with points of light in the sky, and with the application of new instrumentation, the physics breakthroughs of the last century, and computers, we took those points of light and turned them into a narrative of star life.

"For the evolution of single stars like our sun, by and large, we got it right, from birth to death. Now we're starting to do the same thing for the one-quarter of stars that are close-orbiting binaries. This work allows us to talk not about points of light, but about the evolution of galaxies, including our own Milky Way. That's a big deal, and getting it right is an even bigger deal."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Radio Shadow Reveals Tenuous Cosmic Gas Cloud
Washington DC (SPX) Dec 08, 2015
Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered the most tenuous molecular gas ever observed. They detected the absorption of radio waves by gas clouds in front of bright radio sources. This radio shadow revealed the composition and conditions of diffuse gas in the Milky Way galaxy. To calibrate its systems, ALMA looks at objects emitting strong ra ... read more


STELLAR CHEMISTRY
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

STELLAR CHEMISTRY
Mars Mission Team Addressing Vacuum Leak on Key Science Instrument

Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

STELLAR CHEMISTRY
A Year After Maiden Voyage, Orion Progress Continues

NASA's Work to Understand Climate: A Global Perspective

Australia seeks 'ideas boom' with tax breaks, visa boosts

Orion's power system to be put to the test

STELLAR CHEMISTRY
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

STELLAR CHEMISTRY
Getting Into the Flow on the ISS

Orbital to fly first space cargo mission since 2014 explosion

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

STELLAR CHEMISTRY
45th Space Wing supports NASA's Orbital ATK CRS-4 launch

Virgin Galactic Welcomes 'Cosmic Girl' To Fleet Of Space Access Vehicles

Orbital cargo ship blasts off toward space station

Aerojet Rocketdyne completes AJ60 solid booster for Atlas V launcher

STELLAR CHEMISTRY
What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

STELLAR CHEMISTRY
In-Space Manufacturing Prototype

Space Debris - A Growth Industry?

Russia's Kanopus-ST Research Satellite Deorbited, Heading to Earth

A new form of real gold, almost as light as air









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.