. 24/7 Space News .
UAV NEWS
Aerial robot that can morph in flight
by Staff Writers
Marseille, France (SPX) Jun 01, 2018

Hardware description: all the signals are transmitted through the custom-made RCB giving a feedback control of the propeller speeds and voltage levels. RCB, rotor controller board.

Marking a world first, researchers from the Etienne Jules Marey Institute of Movement Sciences (CNRS / Aix-Marseille Universite) have drawn inspiration from birds to design an aerial robot capable of altering its profile during flight. To reduce its wingspan and navigate through tight spaces, it can reorient its arms, which are equipped with propellers that let it fly like a helicopter.

The scientists' work is the subject of an article published in Soft Robotics (May 30, 2018). It paves the way for a new generation of large robots that can move through narrow passages, making them ideal for exploration as well as search and rescue missions.

Birds and winged insects have the remarkable ability to maneuver quickly during flight to clear obstacles. Such extreme agility is necessary to navigate through cramped spaces and crowded environments, like forests.

There are already miniature flying machines that can roll, pitch, or otherwise alter their flight attitude to pass through small apertures. But birds illustrate another strategy that is just as effective for flying through bottlenecks. They can quickly fold their wings during high-speed flight, reducing their imposing span, to easily negotiate the challenging paths before them.[1]

Deployment of aerial robots in constricted and cluttered areas for search and rescue, exploratory, or mapping operations will become more and more commonplace. They will need to be able to circumnavigate many obstacles and travel through fairly tight passages to complete their missions.

Accordingly, researchers from the Etienne Jules Marey Institute of Movement Sciences (CNRS / Aix-Marseille Universite) have designed a flying robot that can reduce its wingspan in flight to move through a small opening, without intensive steering that would consume too much energy and require a robotic platform featuring a low-inertia (light and small robot).[2]

Dubbed Quad-Morphing, the new robot has two rotating arms each equipped with two propellers for helicopter-like flight. A system of elastic and rigid wires allows the robot to change the orientation of its arms in flight so that they are either perpendicular or parallel to its central axis.

It adopts the parallel position, halving its wingspan, to traverse a narrow stretch and then switches back to perpendicular position to stabilize its flight, all while flying at a speed of 9 km/h, which is pretty fast for an aerial robot.

At present, it is the precision of the Quad-Morphing autopilot mechanism that determines the robot's agility. The autopilot activates arm reorientation when the robot nears a tight passage, as determined by a 3D localization system used at the institute.[3]

The researchers have also equipped the robot with a miniature camera that can take 120 pictures per second. In the future, this will allow Quad-Morphing to independently assess the size of the gap before it and fold its wings accordingly if necessary. Flight testing with the new camera will begin this month.

[1] Such impressive behavior has been observed among budgerigars and goshawks flying at speeds above 14 km/h.

[2] Flying robots have typical transversal speed of 4-5 km/h in indoor conditions.

[3] The studies were conducted at the AVM flying machine arena, built with the financial support of the French Equipex Robotex program. The arena has 17 cameras for recording movement.

Research paper


Related Links
CNRS
UAV News - Suppliers and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


UAV NEWS
Lockheed Martin Stalker XE Upgraded with New VTOL Launch and Landing Capability
Palmdale CA (SPX) May 23, 2018
Lockheed Martin's Stalker eXtended Endurance (XE) unmanned aerial system (UAS) has been upgraded with a vertical take-off and landing (VTOL) capability. This new option gives users greater mission flexibility allowing them to operate the system in more austere locations. The new VTOL option features a reduced logistics footprint and expands how and where the Stalker XE UAS may operate. Other launch alternatives include a pneumatic rail or a standard bungee launch system. "By offering three u ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

UAV NEWS
Russian State Space Giant Roscosmos May Curb Space Program Due to Lack of Funds

Putin, Abe speak to ISS astronauts from Kremlin

NASA awards $43M to US Small Businesses for Tech Research

Yoyager's Golden Record may paint humans in a confusing way

UAV NEWS
Commercial satellite launch service market to grow strongly through 2024

Arianespace and ISIS to launch small satellites on the Vega SSMS POC flight

Watch live: SpaceX to launch SES-12 communications satellite

Gilmour Space prepares for suborbital hybrid rocket launch

UAV NEWS
Red Planet rover set for extreme environment workout

Why we won't get to Mars without teamwork

Curiosity Mars rover back on drill duty

Scientists Shrink Chemistry Lab to Seek Evidence of Life on Mars

UAV NEWS
Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

China's Queqiao satellite carries "large umbrella" into deep space

UAV NEWS
Gogo and Iridium Partner to Deliver Best-in-Class Aircraft Connectivity

From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

Goonhilly lands 24m pounds investment enabling global expansion

UAV NEWS
Space Traffic Management - Oversight, Licensing And Enforcement

Zn-InsP6 complex can enhance excretion of radioactive strontium from the body

Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers

Study shows ceramics can deform like metals if sintered under an electric field

UAV NEWS
Linguists gather in L.A. to ponder the Language of ET

Kepler Begins 18th Observing Campaign with a Focus On Star Clusters

A simple mechanism could have been decisive for the development of life

Mars rocks may harbor signs of life from 4 billion years ago

UAV NEWS
Pluto may be giant comet made up of comets, study says

SwRI scientists introduce cosmochemical model for Pluto formation

Jupiter: A New Perspective

OSL Optics to help unlock the secrets of Jupiter's Icy Moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.