Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

A robot that grows
by Staff Writers
Santa Barbara CA (SPX) Jul 21, 2017

The tubular robot as it grows and deforms as needed to navigate its space. Photo Credit: Science Robotics

At first glance, robots would appear to have exactly nothing in common with sweet peas or other climbing vines. Yet thanks to some innovative scientists, they now share at least one trait: the ability to extend their reach.

Inspired by the growing action of plants and other living things, researchers at UC Santa Barbara and Stanford University have developed a tubular robot that - much like a sweet pea - navigates its environment by extending its tip and controlling its growing direction based on what it senses externally. Such a machine lends itself well to a variety of purposes in constrained environments, from clearing arterial blockages to tunneling through rubble for search and rescue operations.

"When you think about robots today, the majority of them are in the world of factories," said UCSB mechanical engineer Elliot Hawkes.

"But there's a big push right now to see if we can create robots that could actually live and help out in the human world." Robots, known for their precision and consistent, repeatable action in highly controlled spaces, are now being explored for their potential to work under variable circumstances. For instance, said Hawkes, these so-called "soft" robots may adapt their actions to the presence of obstacles (including humans) or change shape to interact in a variety of spaces. Research on this project, titled "A soft robot that navigates its environment through growth," appears in the journal Science Robotics.

While much research has been done on robot locomotion, from rolling to flying and even animal-inspired walking, a robot that elongates and extends is a fairly new challenge for mechanical engineers. The design of this particular soft robot was inspired by nature, specifically by trailing vines and fungal hyphae, and even by nerve cells, all of which grow from their tips.

"In the cases where nature uses this type of movement to go somewhere, it's often trying to create a structure which it can then use," Hawkes said. Neurons form conduits that can transport signals between brain and organs, tip-growing cells in the stalk of a plant can support it against wind and rain, and fungal hyphae can transport nutrients.

That principle is the same with the researchers' growing robot. It creates its form via pneumatic pressure from within, similar to an inflating balloon, allowing for the transport of things inside it.

"Pressure is the driving force," Hawkes said. However, unlike an inflating balloon, the pressure does not cause expansion along the length of its body but rather unfurls it at the tip (think of a party blower), eliminating sliding friction between the body and the environment. That was a major priority for the researchers as they sought to develop this proof-of-concept.

"It helps these robots get through really constrained environments because there isn't any sliding," explained Hawkes, who with his colleagues is investigating this technology's potential for endovascular surgery. With conventional techniques, a catheter is inserted into an arterial system - often in the larger artery in the leg - but as it is pushed along may encounter narrower vessels that become more convoluted.

"At some point you might run into this limit," Hawkes said. Too soft a catheter and it will buckle; too stiff and it may poke through the blood vessel wall. With a soft robot that grows, not only can the tip navigate the different twists and turns of the vascular system, but it also can adapt to smaller diameters as needed without excess wear on the delicate tissue of the blood vessel - all the while pulling along the catheter needed to complete the procedure.

On a larger scale, a similar robot could be used in search-and-rescue operations to thread its way through rubble left by collapsed buildings to deliver water to those trapped underneath, with minimal disturbance to the unstable wreckage. Or, it could be used to route cables, wires and hoses between walls and through less accessible spaces during construction.

The technology is still in its very early stages, as Hawkes and his Stanford colleagues work to make the robot more robust and functional under an array of circumstances.

"We have a vision of rescue workers using hundreds of these things because they're just air and plastic," Hawkes said. The researchers are looking into equipping the robots with various sensors that can, for example, sample the air or relay images of the material they are traveling through.

Rovers drive through Tenerife darkness
Paris (ESA) Jul 20, 2017
A pair of ESA rovers trundled around a Moon-like area of Tenerife by both day and night during a nine-day test campaign, gathering terabytes of data for follow-up analysis. A team from ESA's Planetary Robotics Laboratory, with a vehicle called the Heavy Duty Planetary Rover (HDPR), joined engineers from GMV in Spain employing a second ESA-owned rover and associated control systems called t ... read more

Related Links
University of California - Santa Barbara
All about the robots on Earth and beyond!

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

In Gulf of Mexico, NASA Evaluates How Crew Will Exit Orion

Space Tourist From Asian Country to Travel to ISS in 2019

NASA Awards Mission Systems Operations Contract

ULA to launch Dream Chaser for cargo runs to ISS for Sierra Nevada

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Aerojet Rocketdyne tests Advanced Electric Propulsion System

After two delays, SpaceX launches broadband satellite for IntelSat

Spiky ferrofluid thrusters can move satellites

Panorama Above 'Perseverance Valley'

Sol 1756: Closing time

Hubble sees Martian moon orbiting the Red Planet

Curiosity Mars Rover Begins Study of Ridge Destination

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

LISA Pathfinder: bake, rattle and roll

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

Korean Aerospace offices raided in anti-corruption probe

Iridium Poised to Make Global Maritime Distress and Safety System History

Nature-inspired material uses liquid reinforcement

Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Signature analysis of single molecules using their noise signals

Eyes Wide Open for MASCARA Exoplanet Hunter

Ancient worm burrows offer insights into early 'ecosystem engineers'

Molecular Outflow Launched Beyond Disk Around Young Star

A New Search for Extrasolar Planets from the Arecibo Observatory

NASA's New Horizons Team Strikes Gold in Argentina

Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement