Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

A new theory describes ice's slippery behavior
by Staff Writers
Washington DC (SPX) Dec 14, 2015

Slick ice covers a footpath, reducing friction and making walking more dangerous. Bo Persson, a scientist at the Julich Research Center in Germany, has developed a new theory to describe ice friction. Image courtesy Simon A. Eugster. For a larger version of this image please go here.

Winter is coming, promising the usual bouts of frozen precipitation for northern locations. The slickness of snow and ice is a big pain if you're driving, flying or walking, but can be a lot of fun if you strap on a pair of skis.

Bo Persson, a scientist at the Julich Research Center in Germany, has come up with a new theory that describes how slippery ice gets when a hard material like a ski slides across it. The theory agrees well with experimental data and could help to design better sliding systems, for example the aforementioned skis. It could also contribute to a fundamental understanding of ice friction that could help explain the movement of glaciers and other natural processes.

Persson reports his results in The Journal of Chemical Physics, from AIP Publishing.

Saying that ice is slippery is just another way of saying that it has low friction, but predicting ice friction is no easy task.

Ice by itself is not inherently slippery, but it gets so when a thin layer of water forms on the surface. The water can appear when heat from friction melts the ice, or via a natural solid to liquid phase transition, called premelting, that occurs near the surface even at temperatures well below the bulk freezing temperature of water.

This premelting was first observed more than 150 years ago when the British scientist Michael Faraday touched two ice cubes together and saw that they stuck. He concluded there was a liquid-like layer on the surface of the ice that froze when the two cubes came into contact.

Complicating the study of ice friction even further is the fact that the contact between the ice and a sliding object occurs at the interface between two solids, which is called a buried interface.

"It is nearly impossible to study directly at the molecular level what happens at the buried interface," Persson said. This is because the solid material blocks the contact area and you cannot scatter particles like ions or electrons from the interface to study it, like you could for a free surface.

Although premelting of the top layer of a free ice surface has been studied extensively both theoretically and experimentally, the extent to which the results apply to the buried contact area between ice and other solid materials is not clear, Persson noted.

There is, however, a wide range of experimental data that shows how temperature and sliding speed affect friction on ice. Persson's main breakthrough was to connect a theoretical description of ice friction to the experimental data.

He did this by developing an equation that describes ice's frictional shear stress, which is the stress the material experiences in the area of real contact from a force parallel to the surface (such as that caused by a sliding ski).

The equation shows how the shear stress depends on the ice temperature at the surface. The equation suggests that, like the free surface, the buried ice interfaces may also exhibit premelting behavior.

"The most important result is that I have constructed a phenomenological shear stress law which is able to explain ice friction as a function of sliding speed and temperature in a wide velocity and temperature region," Persson said.

The findings contribute to a better understanding of the physical origin of friction on ice, which Persson said is his main interest. Most recently he has extended his exploration to rubber on ice friction, which is important for designing winter tires and shoes. When rubber slides across ice the deformation of the rubber plays an important role in determining the friction.

Ultimately, the work could help everyone enjoy the winter weather more, whether you want to walk safely across ice in your shoes or slide with abandon on a sled or a pair of skis.

The article, "Ice friction: Role of non-uniform frictional heating and ice premelting," is authored by B.N.J. Persson and was published in The Journal of Chemical Physics on Dec. 8, 2015 (DOI: 10.1063/1.4936299).

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
American Institute of Physics
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
A sticky breakthrough makes for practical underwater glue
Santa Barbara CA (SPX) Dec 12, 2015
In an important step toward creating a practical underwater glue, researchers at UC Santa Barbara have designed a synthetic material that combines the key functionalities of interfacial mussel foot proteins, creating a single, low-molecular-weight, one-component adhesive. Their findings appear in the journal Nature Communications. "We have successfully mimicked the biological adhesiv ... read more

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Mars Mission Team Addressing Vacuum Leak on Key Science Instrument

Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

Australia seeks 'ideas boom' with tax breaks, visa boosts

A Year After Maiden Voyage, Orion Progress Continues

NASA's Work to Understand Climate: A Global Perspective

Orion's power system to be put to the test

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

Exp 45 set to return from space station

Getting Into the Flow on the ISS

Orbital to fly first space cargo mission since 2014 explosion

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

45th Space Wing supports NASA's Orbital ATK CRS-4 launch

Orbital cargo ship blasts off toward space station

Virgin Galactic Welcomes 'Cosmic Girl' To Fleet Of Space Access Vehicles

DXL-2: Studying X-ray emissions in space

What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

Colombian eco-designer finds beauty in trash

Penn researchers make thinnest plates that can be picked up by hand

A sticky breakthrough makes for practical underwater glue

Conductor turned insulator amid disorder

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement