. 24/7 Space News .
TIME AND SPACE
A neuron's hardy bunch
by Staff Writers
Boston MA (SPX) Aug 19, 2016


This is a normal mouse neuron with intact docking stations (in green). Docking stations, critical parts of a neuron's communication machinery, house neurotransmitter-packed bubbles (in red) that stand ready to launch when a trigger arrives. A new HMS study reveals that even when these docking stations are dismantled, neurons retain some of their ability to communicate with each other. Image courtesy Harvard Medical School.

Neuroscientists have long known that brain cells communicate with each other through the release of tiny bubbles packed with neurotransmitters--a fleet of vessels docked along neuronal ends ready to launch when a trigger arrives.

Now a study conducted in mice by neurobiologists at Harvard Medical School reveals that dismantling the docking stations that house these signal-carrying vessels does not fully disrupt signal transmission between cells.

The team's experiments, described Aug. 17 in the journal Neuron, suggest the presence of mechanisms that help maintain partial communication despite serious structural aberrations.

"Our results not only address one of the most fundamental questions about neuronal activity and the way cells in the brain communicate with each other but uncover a few surprises too," said Pascal Kaeser, senior author on the study and assistant professor of neurobiology at HMS. "Our findings point to a fascinating underlying resilience in the nervous system."

Ultrafast signal transmission between neurons is vital for normal neurologic and cognitive function. In the brain, cell-to-cell communication occurs at the junction that connects two neurons--a structure known as a synapse. At any given moment, neurotransmitter-carrying vesicles are on standby at designated docking stations, called active zones, each awaiting a trigger to release its load across the synaptic cleft and deliver it to the next neuron.

Signal strength and speed are determined by the number of vesicles ready and capable of releasing their cargo to the next neuron.

Neuroscientists have thus far surmised that destroying the docking stations that house neurotransmitter-loaded bubbles would cause all cell-to-cell communication to cease. The HMS team's findings suggest otherwise.

To examine the relationship between docking stations and signal transmission, researchers analyzed brain cells from mice genetically altered to lack two key building proteins, the absence of which led to the dismantling of the entire docking station.

When researchers measured signal strength in neurons with missing docking stations, they observed that those cells emitted much weaker signals when demand to transmit information was low. However, when stronger triggers were present, these cells transmitted remarkably robust signals, the researchers noticed.

"We would have guessed that signal transmission would cease altogether but it didn't," said Shan Shan Wang, a neuroscience graduate student in Kaeser's lab and a co-first author of the study. "Yet, neurons appear to retain some residual communication even with a key piece of their communication apparatus missing."

Elimination of one active zone building block, a protein called RIM, led to a three-quarter reduction in the pool of vesicles ready for release. Disruption of another key structural protein, ELKS, resulted in one-third fewer ready-to-deploy vesicles.

When both proteins were missing, however, the total reduction in the number of releasable vesicles was far less than expected. More than 40 percent of a neuron's vesicles remained in a "ready to launch" state even with the entire docking station broken down and vesicles failing to dock.

The finding suggests that not all launch-ready vesicles need to be docked in the active zone when a trigger arrives. Neurons, the researchers say, appear to form a remote critical reserve of vesicles that can be quickly marshaled in times of high demand.

"In the absence of a docking sites, we observed that vesicles could be quickly recruited from afar when the need arises," said Richard Held, an HMS graduate student in neuroscience and co-first author on the paper.

The team cautions that any clinical implications remain far off, but say that their observations may help explain how defects in genes responsible for making neuronal docking stations may be implicated in a range of neurodevelopmental disorders.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard Medical School
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
New material discovery allows study of elusive Weyl fermion
Ames IA (SPX) Aug 17, 2016
Researchers at the U.S. Department of Energy's Ames Laboratory have discovered a new type of Weyl semimetal, a material that opens the way for further study of Weyl fermions, a type of massless elementary particle hypothesized by high-energy particle theory and potentially useful for creating high-speed electronic circuits and quantum computers. Researchers created a crystal of molybdenum ... read more


TIME AND SPACE
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

TIME AND SPACE
MAVEN Spacecraft Gears Up to Observe Global Dust Storm on Mars

Full-Circle Vista from NASA Mars Rover Curiosity Shows 'Murray Buttes'

Opportunity rover studying grooves

So you want to drive a spacecraft

TIME AND SPACE
China opens longest glass bottom bridge in world

NASA Licenses New Auto-Tracking Mobile Antenna Platform

HERA crew returns paving the way for human research

Magazine Poses Recommendations for Reshaping Space Policy

TIME AND SPACE
China Ends Preparatory Work on Long March 5 Next-Generation Rocket Engine

China launches hi-res SAR imaging satellite

China launches world first quantum satellite

China launches first mobile telecom satellite

TIME AND SPACE
'New port of call' installed at space station

US astronauts prepare spacewalk to install new docking port

Russia Could Cut Down International Space Station Crew

NASA mulls Russian idea to cut staff at space station

TIME AND SPACE
Ariane 5 is approved for this week's Arianespace launch with two Intelsat payloads

Russian Space Corporation, US Boeing Reach Deal on Dispute Over Sea Launch

Two Intelsat payloads installed on Ariane 5 for next heavy-lift launch

New payload preparation milestones bring Ariane 5's upcoming mission closer to liftoff

TIME AND SPACE
A new Goldilocks for habitable planets

Venus-like Exoplanet Might Have Oxygen Atmosphere, but Not Life

Brown dwarfs reveal exoplanets' secrets

Scientists to unveil new Earth-like planet: report

TIME AND SPACE
Unraveling the crystal structure of a -70C Celsius superconductor

Streamlining accelerated computing for industry

Feeling the force between sand grains

Scientists have created a ceramic, resistant to extreme temperatures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.