Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
A better way of scrubbing CO2
by Staff Writers
Berkeley CA (SPX) Mar 18, 2015


Appending a diamine molecule to this manganese-based MOF greatly increased its capacity for adsorbing CO2. Green, gray, red, blue and white spheres represent Mn, C, O, N and H atoms respectively. Image courtesy of Thomas McDonald, Berkeley Lab. For a larger version of this image please go here.

A means by which the removal of carbon dioxide (CO2) from coal-fired power plants might one day be done far more efficiently and at far lower costs than today has been discovered by a team of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab). By appending a diamine molecule to the sponge-like solid materials known as metal-organic-frameworks (MOFs), the researchers were able to more than triple the CO2-scrubbing capacity of the MOFs, while significantly reducing parasitic energy.

"We've shown that diamine-appended MOFs can function as phase-change CO2 adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature and result in a much higher separation capacity," says Jeffrey Long, a chemist with Berkeley Lab's Materials Sciences Division and the University of California (UC) Berkeley.

"The step-shaped adsorption isotherms are the product of an unprecedented cooperative process in which CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate."

Approximately 13 billion tons of carbon dioxide are released into the atmosphere each year as a result of burning coal for the production of electricity. These carbon emissions are major contributors to global climate change and the acidification of our planet's oceans.

owever, given that the United States holds the world's largest estimated recoverable reserves of coal, coal-burning power plants will continue to be a major source of our nation's electricity generation for the foreseeable future. This makes the wide-spread implementation of carbon capture and storage technologies at coal-fired power plants an imperative.

Current carbon capture and storage technologies are based on aqueous amine scrubbers that impose a substantial energy penalty for their use. If widely implemented, these scrubbers would consume about one-third of the energy generated by a power plant and this would substantially drive up the price of electricity.

MOFs have been proposed as a highly promising alternative to amine scrubbers. Consisting of a metal center surrounded by organic "linker" molecules, MOFs form a highly porous three-dimensional crystal framework with an extraordinarily large internal surface area - a MOF the size of a sugar cube if unfolded and flattened would blanket a football field. By altering their composition, MOFs can be tailored to serve as highly effective storage vessels for capturing and containing carbon dioxide.

Long and colleagues at the Center for Gas Separation Relevant to Clean Energy Technologies, a DOE-funded Energy Frontier Research Center (EFRC) hosted by UC Berkeley, have been exploring various ways to functionalize MOFs for the selective adsorption of CO2.

"An ideal MOF will selectively bind CO2 in the presence of nitrogen and release it under mild regeneration conditions," Long says. "We were experimenting with the appending of diamines to the open coordination sites in the framework pores of a MOF as a way of increasing the adsorption of CO2. Once we saw the formation of the isotherm steps we knew we had something different and important going on."

The appending of the diamine to the metal sites set off a chain reaction of events in which the carbon, metal and amines cooperatively reconfigured into the ammonium carbonates that enabled the CO2 isotherm adsorption steps.

The researchers then found that the pressure at which these adsorption steps occur can be tuned in accordance with the strengths of the metal-amine bonds. By starting with magnesium ions, then strategically replacing them with ions of manganese, iron, cobalt and zinc, Long and his colleagues were able to create the first solid phase-change CO2 scrubbing materials.

"With our technique, large CO2 separation capacities can be achieved with small temperature swings and regeneration energies that are appreciably lower than what can be achieved with state-of-the-art aqueous amine solutions," Long says. "We now understand how this CO2 cooperative process works and should be able to use the mechanism to design highly efficient adsorbents for removing CO2 from various gas mixtures."

To adapt this technique to real-world applications, Long is now working with chemist Steven Kaye on the Mosaic Materials Project. Aimed at replacing today's energy-intensive and expensive distillation and adsorption processes with high-efficiency MOFs, the Mosaic Materials Project is being funded by Cyclotron Road, a technology-incubation program established by Berkeley Lab.

Details on this research are reported in a paper published in the journal Nature. The paper is titled "Cooperative insertion of CO2 in diamine-appended metal-organic frameworks." Long is the corresponding author. The lead authors are Thomas McDonald and Jarad Mason. (See below for a complete list of co-authors.) In addition to Long, McDonald and Mason, other authors of the Nature paper that describes this study were Xueqian Kong, Eric Bloch, David Gygi, Alessandro Dani, Valentina Crocella, Filippo Giordanino, Samuel O. Odoh, Walter Drisdell, Bess Vlaisavljevich, Allison Dzubak, Roberta Poloni, Sondre Schnell, Nora Planas, Kyuho Lee, Tod Pascal, Liwen F.Wan, David Prendergast, Jeffrey Neaton, Berend Smit, Jeffrey Kortright, Laura Gagliardi, Silvia Bordiga and Jeffrey Reimer.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CARBON WORLDS
Global CO2 emissions stall despite economic growth: IEA
Paris (AFP) March 13, 2015
Global carbon dioxide emissions from the energy sector stalled in 2014, the first time in 40 years during a period of economic growth, the International Energy Agency said Friday. By far the main culprit in global warming, carbon dioxide emissions stood at 32.3 billion tonnes in 2014, unchanged from the previous year, the IEA said. "This is both a very welcome surprise and a significant ... read more


CARBON WORLDS
Billionaire Teams Up with NASA to Mine the Moon

China Gets One Step Closer to Completing its Ambitious Lunar Mission

Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

CARBON WORLDS
NASA Challenge Invites Students to Help Design Journey to Mars Systems

Taking a Closer Look at Purple-Bluish Rock Formation

Mystery Giant Mars Plumes Still Unexplained

Have you ever used a camera on board an interplanetary spacecraft

CARBON WORLDS
Merkel to open IT fair with China showcasing tech's shift east

Intergalactic GPS Will Guide You through the Stars

Space soprano plans first duet from ISS

Planetary Society Announces Test Flight for Privately Funded LightSail Spacecraft

CARBON WORLDS
China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

Tianzhou-1 cargo ship to dock with space lab in 2016

China's test spacecraft simulates orbital docking

CARBON WORLDS
Testing astronauts' lungs in Space Station airlock

Astronauts return to Earth on Russian Soyuz spaceship

International Space Station 'Lost' Without Russia Says NASA Chief

US astronauts speed through spacewalk at orbiting lab

CARBON WORLDS
Soyuz Installed at Baikonur, Expected to Launch Wednesday

45th Space Wing unveils multi-vehicle launch support center

THOR 7 being fueled for Arianespace's dual-payload April mission

Arianespace wins SES-15 launch contract

CARBON WORLDS
Scientists: Nearby Earth-like planet isn't just 'noise'

'Habitable' planet GJ 581d previously dismissed as noise probably does exist

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

CARBON WORLDS
In pursuit of the perfectly animated cloud of smoke

3-D printer for small molecules opens access to customized chemistry

Researchers identify process for improving durability of glass

New research into materials for tooth fillings




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.