Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Lighting Up The Van Allen Belts
Stanford - December 6, 1999 - Within roughly a second of a single lightning flash in Texas, electrons can precipitate out of the Earth's radiation belts onto the upper  atmosphere above an area spanning Oklahoma to South Dakota, researchers at Stanford have found.

Theirs is the first evidence that lighting can have such a far-ranging effect -- temporarily changing the composition of the radiation belts and the ionosphere below it within an area of several hundred thousand square miles.

The findings, reported in the Dec. 1 issue of Geophysical Research Letters, suggest "lightning could be an important contributor to the loss of electrons from the Earth's radiation belt, and thus helps us better understand the Earth's near-space environment," said Umran Inan, a professor of electrical engineering in Stanford's STARLab (Space, Telecommunications and Radioscience Laboratory).

Inan and graduate student Michael Johnson made the observations by deploying a network of very low frequency radio receivers in the Midwest that are able to sense changes in the ionosphere -- the conducting portion of the Earth's atmosphere that begins some 40 miles above ground. The observed lightning-associated disturbances are remarkably consistent, they said, with independent theoretical predictions of radiation belt precipitation from lightning published by recent graduate David Lauben, a former student of Inan's.

Scientists have known for several decades that the electromagnetic waves from lightning cause electrons to rain out of the radiation belt, "but this result indicates it occurs on a huge scale at night," Inan said. "It also must occur during the day, but the effect on the ionosphere is relatively small compared to solar ionization. At these mid-latitudes, we now think the nighttime ionosphere may be dominated by these lightning effects."

Electrons trapped in the Earth's magnetic field come in from the sun as solar wind, he said, and are accelerated in the radiation belts where they stay trapped bouncing from one end of the magnetic field line to the other, until some other process comes along to release them. Lightning performs that function by launching waves upward nearly along the Earth's magnetic field lines, scattering high energy particles in both momentum and pitch angle along the route.

Deflected from their trapped orbit, the electrons precipitate out into the atmosphere where they produce light, X-rays and ionization.

Previously, researchers thought effective precipitation of electrons was only caused by waves traveling in tiny tubes of ionization along magnetic field lines called ducts, with lightning only affecting those trapped electrons that are confined to these narrow paths in space.

The new finding indicates that electromagnetic waves from lightning populate large regions of the radiation belts from which they precipitate electrons, which means they could potentially influence loss rates of trapped particles on a global scale.

Not every lightning flash behaves this way, Inan said. He and Johnson are now trying to determine when it does and doesn't. "You can imagine in a thunderstorm, particularly after a solar blast has built up the particles in the radiation belt, that you could get these splashes of particles precipitating out every second, which would have a large effect on the ionosphere," Inan said.

The team has found dozens of examples. But they report in detail on the effects from a few strikes that were particularly well located for monitoring by their receiver network, including one strike in a group of flashes that lit up the sky near Austin, Texas, in the early morning hours of Oct. 18, 1998.

The precipitated energetic electrons began raining down about a second after the strike and over a huge area beginning several hundred miles to the north of Austin and ending in South Dakota. "The effect may have kept on going further north," Johnson said, "but that's how far we were able to track it from our existing network."

The size, location and temporal evolution of the particle precipitation area were remarkably similar to those predicted in computer simulations that Lauben had conducted beforehand for his doctoral thesis, Inan said.

The ground-based receiver network, called HAIL for Holographic Array for Ionospheric Lightning research, is operated by the Stanford team in collaboration with high school students and science teachers in nine schools from New Mexico to Wyoming. The receivers are able to track changes in an area above the range of weather balloons but below the range of satellites by monitoring the effects of the changes on exceptionally stable very low frequency radio signals used for U.S. Navy communications, Johnson said.

"The ground acts as one metal plate at these frequencies and the ionosphere acts as another, but the ionosphere occasionally changes its properties because of activity such as lightning, solar flares or gamma ray bursts, which in turn changes the waves propagating underneath it," he said.

The high school students help maintain the receivers, do their own research projects and send data over the Internet for analysis by Inan's research group. Inan, Johnson and others in the group now have given more than 40 talks on solar-terrestrial physics and have obtained funding to sponsor three student-teacher pairs to attend the American Geophysical Union fall meeting in San Francisco.

  • Dec. 1 article in Geophysical Research Letters

    A Heart Of Cold Hard Iron
    Earth's Interior by Calvin J. Hamilton Baltimore - November 23, 1999 - One of the world's biggest cold fronts might be under our feet rather than over our heads, according to results from earth scientists at The Johns Hopkins University. Writing in this week's issue of Science, Hopkins researchers describe a laboratory experiment designed to model conditions in the outer core of the Earth, which is composed of molten iron. The laboratory results point to the possibility that a thin jet of relatively cold molten iron is streaming down across the liquid outer core from an area in the mid-Pacific to Earth's solid iron inner core.

  • A Heart Of Cold Hard Iron
  • Lighting Up The Van Allen Belts
  • Spheres of Influence Ensures Pulling Power
  • Planetary Dynamo On The Desk
  • Earth's Magnetic Quirks
  • Views of Earth's Interior

    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

    SpaceDaily Contributor
    $5 Billed Once

    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly

    paypal only

    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.