24/7 Space News
ICE WORLD
Yale joins the 'Snowball' fight over global deep freeze periods
For two of the warmer climate scenarios (Cretaceous and preindustrial), the researchers found that it was unlikely that an asteroid strike could trigger global glaciation. But for the Last Glacial Maximum and Neoproterozoic scenarios, when the Earth's temperature may have been already cold enough to be considered an ice age - an asteroid strike could have tipped Earth into a "Snowball" state.
ADVERTISEMENT
     
Yale joins the 'Snowball' fight over global deep freeze periods
by Staff Writers
New Haven CT (SPX) Feb 12, 2024

A Yale-led research team has picked a side in the "Snowball Earth" debate over the possible cause of planet-wide deep freeze events that occurred in the distant past.

According to a new study, these so-called "Snowball" Earth periods, in which the planet's surface was covered in ice for thousands or even millions of years, could have been triggered abruptly by large asteroids that slammed into the Earth.

The findings, detailed in the journal Science Advances, may answer a question that has stumped scientists for decades about some of the most dramatic known climate shifts in Earth's history. In addition to Yale, the study included researchers from the University of Chicago and the University of Vienna.

Climate modelers have known since the 1960s that if the Earth became sufficiently cold, the high reflectivity of its snow and ice could create a "runaway" feedback loop that would create more sea ice and colder temperatures until the planet was covered in ice. Such conditions occurred at least twice during Earth's Neoproterozoic era, 720 to 635 million years ago.

Yet efforts to explain what initiated these periods of global glaciation, which have come to be known as "Snowball Earth" events, have been inconclusive. Most theories have centered on the notion that greenhouse gases in the atmosphere somehow declined to a point where "snowballing" began.

"We decided to explore an alternative possibility," said lead author Minmin Fu, the Richard Foster Flint Postdoctoral Fellow in the Department of Earth and Planetary Sciences in Yale's Faculty of Arts and Sciences. "What if an extraterrestrial impact caused this climate change transition very abruptly?"

For the study, the researchers used a sophisticated climate model that represents atmospheric and ocean circulation, as well as the formation of sea ice, under different conditions. It is the same type of climate model that is used to predict future climate scenarios.

In this instance, the researchers applied their model to the aftermath of a hypothetical asteroid strike in four distinct periods of the past: preindustrial (150 years ago), Last Glacial Maximum (21,000 years ago), Cretaceous (145 to 66 million years ago), and Neoproterozoic (1 billion to 542 million years ago).

For two of the warmer climate scenarios (Cretaceous and preindustrial), the researchers found that it was unlikely that an asteroid strike could trigger global glaciation. But for the Last Glacial Maximum and Neoproterozoic scenarios, when the Earth's temperature may have been already cold enough to be considered an ice age - an asteroid strike could have tipped Earth into a "Snowball" state.

"What surprised me most in our results is that, given sufficiently cold initial climate conditions, a 'Snowball' state after an asteroid impact can develop over the global ocean in a matter of just one decade," said co-author Alexey Fedorov, a professor of ocean and atmospheric sciences in Yale's Faculty of Arts and Sciences. "By then the thickness of sea ice at the Equator would reach about 10 meters. This should be compared to a typical sea ice thickness of one to three meters in the modern Arctic."

As for the chances of an asteroid-induced "Snowball Earth" period in the years to come, the researchers said it was unlikely - due in part to human-caused warming that has heated the planet - even though other impacts could be as devastating.

The research was supported by the Flint Postdoctoral Fellowship at Yale and the ARCHANGE project. Co-authors of the study are Dorian Abbot of the University of Chicago and Christian Koeberl of the University of Vienna.

Related Links
Yale University
Beyond the Ice Age

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ICE WORLD
What turned Earth into a giant snowball 700m years ago
Sydney, Australia (SPX) Feb 12, 2024
Australian geologists have used plate tectonic modelling to determine what most likely caused an extreme ice-age climate in Earth's history, more than 700 million years ago. The study, published in Geology, helps our understanding of the functioning of the Earth's built-in thermostat that prevents the Earth from getting stuck in overheating mode. It also shows how sensitive global climate is to atmospheric carbon concentration. "Imagine the Earth almost completely frozen over," said the stud ... read more

ADVERTISEMENT
ADVERTISEMENT
ICE WORLD
LeoLabs secures $29M to expand space safety using AI-based solutions

AFRL Helps NASA wrap up equipment testing for Artemis mission

Flawless Photonics to Test Groundbreaking In-Space Glass Fabrication on ISS

Collins Aerospace Advances Next-Gen Spacesuit for ISS in Milestone Test

ICE WORLD
USSF-124 Mission: Successful Deployment of Security Satellites with SpaceX

First Ariane 6 flight model ships to Europe's Spaceport

Second Private US Moon Probe launches on a Falcon 9 rocket

Japan postpones next-gen rocket launch over weather

ICE WORLD
A Feast of Images: Sols 4093-4094

NASA engineers trying to fix stuck dust cover on Perseverance Mars rover camera

Fun Math and a New Butte: Sols 4096-4097

Partial Cover Malfunction on Perseverance's SHERLOC Instrument Impacts Mars Research

ICE WORLD
BIT advances microbiological research on Chinese Space Station

Shenzhou 18 and 19 crews undertake intensive training for next missions

Space Pioneer and LandSpace Lead China's Private Sector to New Heights in Space

Tianzhou 6 burns up safely reentering Earth

ICE WORLD
Sidus Space Advances with LizzieSat Satellites LS-2 and LS-3 Production on Track

An astronomer's lament: Satellite megaconstellations are ruining space exploration

UK invests in pioneering Mars and Lunar science with new funding

Apollo to Artemis: Why America is betting big on private space

ICE WORLD
MXene-coated Devices Can Guide Microwaves in Space and Lighten Payloads

Spectrum's high-precision PCBs enhance space communication for Psyche Mission

Cool upgrade for deep-space dish

Pioneering E-band technology for unprecedented space communication speeds

ICE WORLD
Passing Stars Altered Orbital Changes in Earth, Other Planets

SETI Institute Utilizes Advanced Ellipsoid Technique in Quest for Extraterrestrial Signals

Scientists Unveil Free-Floating Planetary Giants in the Orion Nebula

Migration solves exoplanet puzzle

ICE WORLD
NASA invites public to dive into Juno's Spectacular Images of Io

Europa Clipper gears up with full instrument suite onboard

New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.