Subscribe free to our newsletters via your
. 24/7 Space News .

X-ray laser FLASH spies deep into giant gas planets
by Staff Writers
Hamburg, Germany (SPX) Mar 13, 2014

Set-up at DESY's X-ray laser FLASH. Image courtesy Ulf Zastrau/University of Jena. For a larger version of this image please go here.

Using DESY's X-ray laser FLASH, researchers took a sneak peek deep into the lower atmospheric layers of giant gas planets such as Jupiter or Saturn. The observations of the team around lead author Dr. Ulf Zastrau from the University of Jena reveal how liquid hydrogen becomes a plasma, and provide information on the material's thermal conductivity and its internal energy exchange, which are important ingredients for planetary models. The scientists present their experiments in Friday's issue of the scientific journal Physical Review Letters.

The atmosphere of gas giants consists mainly of hydrogen, which is the most abundant chemical element in the universe. "We have very little experimental knowledge about the hydrogen in the interior of such planets," says Zastrau. "This is despite our very good theoretical models." The researchers therefore decided to use cold liquid hydrogen as a sample of the planetary atmosphere.

"Liquid hydrogen has a density that corresponds to that of the lower atmosphere of such giant gas planets," explains Zastrau. The scientists used DESY's X-ray laser FLASH to heat liquid hydrogen, almost instantaneously, from minus 253 to around 12,000 degrees Celsius and simultaneously observed the properties of the element during the heating process.

Hydrogen is the simplest atom of the periodic table, consisting of a single proton in the atomic nucleus, which is orbited by a single electron. Normally, hydrogen occurs as a molecule consisting of two atoms. The X-ray laser pulse initially heats only the electrons.

These slowly transfer their energy to the protons, which are around 2,000 times heavier, until a thermal equilibrium is reached. The molecular bonds break during this process, and a plasma of electrons and protons is formed. Although this process takes many thousands of collisions between electrons and protons, the studies showed that the thermal equilibrium is attained in just under a trillionth of a second (a picosecond).

Astrophysics in the lab
"We are carrying out experimental laboratory astrophysics," explains Zastrau. Until now, researchers have relied on mathematical models to describe the interior of gas giants such as Jupiter. Important model parameters include the dielectric properties of hydrogen-for example, the thermal and electrical conductivities - which are crucial to correctly simulate the massive, outward-directed heat flows in giant gas planets.

"The study has revealed the dielectric properties of the liquid hydrogen," reports co-author Dr. Philipp Sperling from the University of Rostock. "When you know the thermal and electrical conductivities of the individual layers of hydrogen in the atmosphere of a giant gas planet, you can calculate the associated temperature profile."

The researchers' experiments enabled them to locate a first point in the phase diagram of hydrogen. The experiments will have to be repeated at other temperatures and pressures in order to create a detailed picture of the entire planetary atmosphere.

The study requires a great deal of effort, in part because hydrogen does not normally exist in liquid form on earth. In order to liquefy hydrogen gas, it first must be cooled to minus 253 degrees Celsius. "We use extremely pure hydrogen gas and force it through a copper block that is cooled by liquid helium," explains DESY researcher Dr. Sven Toleikis, a member of the team.

"The temperature must be very precisely controlled during this process. If the hydrogen gets too cold, it freezes and blocks the line," says Toleikis. In such cases, a small heater is used to re-liquefy the hydrogen as needed. At the end of the copper block, a nozzle projects like a finger into the experimental vacuum chamber.

From its tip flows a fine jet of liquid hydrogen with a diameter of just one fiftieth of a millimetre (20 micrometres). This experimental setup has been developed in the course of many years of cooperation between the University of Rostock and DESY.

In order to study the properties of liquid hydrogen as it vaporizes, the researchers shot the intense pulses of DESY's FLASH soft X-ray laser at the fine jet. "For the experiment, we used FLASH's unique ability to split up the individual flashes," explains Toleikis. "The first half of the flash heats up the hydrogen, and we use the second half to investigate its properties."

Using the Split-and-Delay Unit, which was developed in cooperation with the University of Munster and the Helmholtz-Zentrum Berlin, the second half of the flash is deliberately delayed by a tiny fraction of a second (up to 15 picoseconds, i.e. trillionth of a second). By studying the system in this way with slightly different delay times, the way in which a thermal equilibrium is established between the electrons and the protons in the hydrogen can be observed similar to a super-slow motion camera.

The interpretation of the observation data was not simple, however. "It took us a long time to understand what was actually happening in the experiment," says Prof. Ronald Redmer, who leads the Rostock working group. The researchers made use of density functional theory-a standard tool of quantum physics which is used to describe systems with many electrons-to model the process.

However, this standard procedure does not work for systems with two different temperatures, as in the FLASH experiment. "Before we were able to correctly describe the observations, we had to extend density functional theory with a two-temperature model," reported Redmer.

"Our experiment showed us the way of how to investigate dense plasmas with X-ray lasers," says Dr. Thomas Tschentscher, scientific director of the European XFEL X-ray laser, at which experiments will be possible in 2017.

"This method opens up the road for further studies, e.g. of denser plasmas of heavier elements and mixtures, as they occur in the interior of planets. Hopefully, the results will provide us among others with an experimentally based answer to the question, why the planets discovered outside our solar system do not exist in all imaginable combinations of properties as age, mass, size or elemental composition, but may be allocated to certain groups."

In addition to the universities of Jena and Rostock and DESY, researchers from the US research centres SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, the Helmholtz Institute Jena, the University of Oxford, the GSI Helmholtz Centre for Heavy Ion Research, the Hamburg Centre for Ultrafast Imaging (CUI), the University of Munster and the European XFEL also participated in the study.

The work was supported by the Federal Ministry of Education and Research (BMBF) as part of the research topics (FSP) 301 and 302 and by the VolkswagenStiftung by a Peter Paul Ewald Fellowship.

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 percent) and the German federal states of Hamburg and Brandenburg (10 percent).

At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

"Resolving ultra-fast heating of dense cryogenic hydrogen"; U. Zastrau et al.; Physical Review Letters, 2014; DOI: 10.1103/PhysRevLett.


Related Links
Deutsches Elektronen-Synchrotron
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Crashing Comets Explain Surprise Gas Clump Around Young Star
Santiago, Chile (SPX) Mar 11, 2014
Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in northern Chile have today announced the discovery of an unexpected clump of carbon monoxide gas in the dusty disc around the star Beta Pictoris. This is a surprise, as such gas is expected to be rapidly destroyed by starlight. Something - probably frequent collisions between small, icy objects such as co ... read more

Spacesuits And Moon Notes Among The Stars At Bonhams NYC Auction

Russia to launch three lunar rovers from 2016 to 2019

Control circuit malfunction troubles China's Yutu

China's Lunar Lander Still Operational

NASA Orbiter Safe After Unplanned Computer Swap

Concerns and Considerations with the Naming of Mars Craters

Lava floods the ancient plains of Mars

Mars name-a-crater scheme runs into trouble

American, two Russians back on Earth after half-year in space

First space tourists to fly around Mars and Venus in 2021

Under shadow of spy scandal, Merkel, Cameron head to tech fair

Mini Rocket Models to be Used in a Big Way for SLS Base Heating Test

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

China capable of exploring Mars

Japanese astronaut becomes ISS commander

Station Crew Preps for Return to Earth, Repairs Recycling System

NASA says US-Russia space ties 'normal'

Cancer Targeted Treatments from Space Station Discoveries

Launcher assembly begins for Ariane 5 Flight VA218

ILS And ISS Reshetnev Announce Proton Dual Launch Agreement

Arianespace in spotlight at Satellite 2014: expects another record-breaking year

United Rocket and Space Corporation registered in Russia

UK joins the planet hunt with Europe's PLATO mission

X-ray laser FLASH spies deep into giant gas planets

Crashing Comets Explain Surprise Gas Clump Around Young Star

Every red dwarf star has at least one planet

Ultra sensitive detection of radio waves with lasers

Squeezing light into metals

Build me a face in 3D: British man's life 'transformed'

Microsoft hopes 'Titanfall' can boost Xbox One

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.