. 24/7 Space News .
WATER WORLD
Would a deep-Earth water cycle change our understanding of planetary evolution?
by Staff Writers
Washington DC (SPX) Dec 19, 2019

A tiny sample of stishovite used by the researchers in the lab.

Every school child learns about the water cycle - evaporation, condensation, precipitation, and collection. But what if there were a deep Earth component of this process happening on geologic timescales that makes our planet ideal for sustaining life as we know it?

New work published in the Proceedings of the National Academy of Sciences by Carnegie's Yanhao Lin and Michael Walter - along with former Carnegie scientists and ongoing collaborators Ho-Kwang "Dave" Mao and Qingyang Hu of the Center for High Pressure Science and Technology Advanced Research Shanghai and Yue Meng of Argonne National Laboratory - demonstrates that a key mineral called stishovite is capable of storing and transporting large amounts of water even under extreme conditions like those found in Earth's lower mantle.

This is important, because it shows that substantial quantities of water could be present farther into the mantle than previously thought, indicating that a whole-mantle water cycle is possible.

"To get down into the mantle, water must be incorporated into minerals on the surface and then be stably maintained in those structures under the conditions found deep inside the planet," explained lead author Lin.

The researchers used lab-based mimicry to study the mineral stishovite, which is a high-pressure form of quartz, when it's with water under high pressure and temperature conditions. We already know substantial amounts of water can be stored in silicate minerals in the Earth's upper mantle, which exists between 100 and 670 kilometers (or 62 to 416 miles) deep.

But the team examined stishovite and water under simulated conditions like those found deep in the lower mantle, which exists between 670 and 2,900 kilometers (or 416 to 1,802 miles) down, where it was thought that much less water could be stably stored in minerals.

"Stishovite is a silica-based mineral and a major component of the oceanic crust." explained Mao. "In plate tectonics, there are areas called subduction zones where an oceanic plate slides beneath a continental plate, sinking from the Earth's surface into its depths. When this happens, stishovite is transported into the mantle."

The discovery of diamonds with water-containing mineral inclusions that come from depths to about 700 kilometers (or 535 miles) down in the mantle revealed that water indeed gets at least that far down if it finds the right mineral with which to hitch a ride.

Stishovite is one such mineral, but is it capable of taking water even deeper, down into the lower mantle? This is what the researchers set out to discover.

They subjected tiny samples of stishovite with water to a range of about 320,000 to 510,000 times normal atmospheric pressure and heated it to a range of about 1,000 to 1,500 degrees Celsius simulating a gradient transiting from upper mantle conditions to lower mantle conditions. Remarkably, they found that stishovite can accommodate large amounts water even under these conditions.

"If water can be stored in minerals at lower mantle pressures and temperatures, it could indicate that there is a global water cycle occurring on very long geologic time scales," explained Walter. "This could alter our understanding of how deep planetary interiors may influence or control the water content at the surface."

Research paper


Related Links
Carnegie Institution for Science
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Unique form of quartz may power deep-Earth water cycle
Washington (UPI) Dec 17, 2019
Most of what scientists know about Earth's water cycle involves processes - evaporation, condensation and precipitation - happening above the planet's crust. But new research suggests the water cycle may have a deep-Earth component. In a new paper, published this week in the journal PNAS, scientists have described for the first time the remarkable water-carrying abilities of the mineral stishovite, a unique form of quartz. Lab tests showed the mineral can transport surprisingly large a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Boeing and NASA approach milestone orbital flight test

Preparing to test Orion spacecraft requires a big plane, huge cranes and a vacuum cleaner

NASA says Boeing Starliner ready to fly as early as Dec 20

Aerojet Rocketdyne gears up for first flight of Boeing's Starliner

WATER WORLD
SpaceX launches JCSAT 18 Kacific 1 communication satellite

Scaling up for the next generation of rocket technology Down Under

Jeff Bezos's Blue Origin rocket makes 12th test flight

NASA gears up to test fire new SLS moon rocket in Mississippi

WATER WORLD
Lockheed Martin delivers Mars 2020 rover aeroshell to launch site

Two rovers to toll on Mars Again in 2020

MAVEN maps winds in upper atmosphere of Mars that mirror the terrain below and gives clues to climate

Mars: we may have solved the mystery of how its landslides form

WATER WORLD
China sends six satellites into orbit with single rocket

China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

WATER WORLD
Iridium Continues GMDSS Readiness with Announcement of Launch Partners

Nilesat-301 satellite to be built by Thales Alenia Space

SpaceChain sends blockchain tech to ISS

SpaceChain sends blockchain tech to ISS for Fintech market

WATER WORLD
New aluminium hydroxide stable at extremely high pressure

Storing data in everyday objects

Calling radio amateurs: help find OPS-SAT!

OneWeb to use advanced grappling tech from Altius Space Machines

WATER WORLD
CHEOPS space telescope to investigate extrasolar planets

Short-lived light sources discovered in the sky

OU research group confirm planet-mass objects in extragalactic systems

Water common yet scarce in exoplanets

WATER WORLD
NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.