. | . |
With DUST-2 launch, NASA's sounding rocket program is back on the range by Miles Hatfield for GSFC News Greenbelt MD (SPX) Sep 07, 2020
NASA is preparing for the first launch of a sounding rocket since the coronavirus pandemic began in the United States. The DUST-2 mission, which is short for the Determining Unknown yet Significant Traits-2, will carry a miniature laboratory into space, simulating how tiny grains of space dust - the raw materials of stars, planets and solar systems - form and grow. The launch window opens at the White Sands Missile Range in New Mexico on September 8, 2020. DUST-2, a collaboration between NASA and the Japan Aerospace Exploration Agency, follows up on the DUST mission launched in October 2019. Like its predecessor, DUST-2 will fly on a sounding rocket, a suborbital rocket that makes a brief trip into space before falling back to Earth. Sounding rockets provide cost-effective access to space and remain one of the most efficient ways to achieve near-zero gravity, a critical requirement for the mission. DUST-2's goal is to study how individual atoms, shed by dying stars and supernovae, stick together. When they do, they form dust grains - some of the basic building blocks of our universe. "What we're trying to do is duplicate what happens in at least two astrophysical environments," said principal investigator Joe Nuth, a planetary scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "One is when [dust] grains form when stars die, as they blow off their outer atmospheres. The other is during the formation of solar systems, where you're actually forming planets from the vaporized dust of star-forming clouds." Both environments involve atoms colliding, sticking together, and forming dust grains. But exactly how dust grains form and grow depends on many different factors. Nuth and his collaborator, Yuki Kimura of Hokkaido University in Japan, designed DUST-2 to study which factors are most important. The refrigerator-sized mini-laboratory will launch aboard a Black Brant IX sounding rocket, reaching an altitude of about 210 miles high before beginning to fall back down to Earth. A lot happens in the next six and a half minutes. Thirty seconds into freefall, the first of its six experiments - all slight modifications of one another - kicks on. Inside a sealed chamber, a tiny filament begins to heat up. The thin coating of iron, silicon, magnesium and other particles sprayed onto the filament diffuse into the surrounding chamber. Some of these atoms will collide and stick - the beginnings of a dust grain - while others ricochet away. Each minute, another chamber turns on until the payload parachutes back to Earth for recovery. Back in the lab, Nuth, Kimura and their teams will study the grains that formed in each of the six chambers. Hotter particles collide more often, so they will measure how grains formed differently farther or closer to the hot filament. Some elements may block one another from growing dust grains, so they will study which elements ended up in each grain. They'll also explore a surprise finding from the DUST-1 mission: In that experiment, dust grains that formed in argon gas with a small fraction (5%) of oxygen tended to smush together more than those formed in pure argon, a non-reactive noble gas. "Without the oxygen, the atoms were like little billiard balls that touched and stuck," said Nuth. "But with oxygen, when the billiard balls touched, they partially merged together. That was something we didn't suspect." Their hunch is that oxygen lowered the melting point of the dust grain, so that incoming particles mashed into partly molten material. To test this idea, DUST-2 removed all oxygen and replaced it with a small quantity (about 5%) of hydrogen. "If that's the case, we should get none of that merging with hydrogen," Nuth said. "So we'll see if it pans out." The experiment also includes a new carbon fiber heating filament for more precise control of the temperature. But the biggest difference between DUST-1 and DUST-2 is in mission operations - it's the first sounding rocket to launch during the COVID-19 pandemic. The team has implemented many new processes in the background to ensure the launch can happen while protecting the health of the workforce. "As we carefully evaluated each task, we developed new ways to accomplish some of our hands-on work to minimize the risk of exposure," said John Hickman, deputy program manager for NASA's Sounding Rockets Program. Every four hours, the team sanitizes all surfaces and equipment. "In addition to masks we have eye protection - face shields and safety glasses," said Eric Roper, NSROC mission manager who oversaw operations at White Sands. "We've worked pretty hard to develop a culture of doing these things as second nature." It seems to be working - even with the new precautions, launch preparations have proceeded on schedule. "Honestly it's going about the same pace as usual," said Roper. "The team's done a phenomenal job adapting to the situation." NASA's Sounding Rockets Program is managed at the agency's Wallops Flight Facility, which is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. NASA's Heliophysics Division funds the Sounding Rockets Program for the agency.
Engineers test Space Launch System rocket booster in Utah Washington DC (UPI) Sep 02, 2020 Engineers successfully performed a test fire of the Space Launch System rocket's full-scale booster on Wednesday afternoon. Live footage of the test, which took place at Northrop Grumman's facilities in Promontory, Utah, showcased the tremendous force generated by the system's rockets. The broadcast showcased a massive trail of fire and exhaust emanating from the base of the rocket and blowing across the desert dunes, scorching the sage brush in its path. The rocket fired for two minutes ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |