. 24/7 Space News .
SOLAR SCIENCE
Why does the corona sizzle at a million degrees
by Tracey Regan for NJIT News
Newark NJ (SPX) May 09, 2018

A team of physicists, including NJIT's Gregory Fleishman, has discovered previously undetected energy in the Sun's coronal loops

The Sun's corona, invisible to the human eye except when it appears briefly as a fiery halo of plasma during a solar eclipse, remains a puzzle even to scientists who study it closely. Located 1,300 miles from the star's surface, it is more than a hundred times hotter than lower layers much closer to the fusion reactor at the Sun's core.

A team of physicists, led by NJIT's Gregory Fleishman, has recently discovered a phenomenon that may begin to untangle what they call "one of the greatest challenges for solar modeling" - determining the physical mechanisms that heat the upper atmosphere to 1 million degrees Fahrenheit and higher. Their findings, which account for previously undetected thermal energy in the corona, were recently published in the 123-year-old Astrophysical Journal, whose editors have included foundational space scientists such as Edwin Hubble.

"We knew that something really intriguing happens at the interface between the photosphere - the Sun's surface - and the corona, given the noticeable disparities in the chemical composition between the two layers and the sharp rise in plasma temperatures at this junction," notes Fleishman, a distinguished research professor of physics.

With a series of observations from NASA's space-based Solar Dynamics Observatory (SDO), the team has revealed regions in the corona with elevated levels of heavy metal ions contained in magnetic flux tubes - concentrations of magnetic fields - which carry an electrical current. Their vivid images, captured in the extreme (short wave) ultraviolet (EUV) band, reveal disproportionally large - by a factor of five or more - concentrations of multiply charged metals compared to single-electron ions of hydrogen, than exist in the photosphere.

The iron ions reside in what the team calls "ion traps" located at the base of coronal loops, arcs of electrified plasma directed by magnetic field lines. The existence of these traps, they say, implies that there are highly energetic coronal loops, depleted of iron ions, which have thus far eluded detection in the EUV range. Only metal ions, with their fluctuating electrons, produce emissions which make them visible.

"These observations suggest that the corona may contain even more thermal energy than is directly observed in the EUV range and that we have not yet accounted for," he says. "This energy is visible in other wavelengths, however, and we hope to combine our data with scientists who view it through microwaves and X-rays, such as scientists at NJIT's Expanded Owens Valley Solar Array, for example, to clarify mismatches in energy that we've been able to quantify so far."

There are various theories, none yet conclusive, that explain the sizzling heat of the corona: magnetic energy lines that reconnect in the upper atmosphere and release explosive energy and energy waves dumped in the corona, where they are converted to thermal energy, among others.

"Before we can address how energy is generated in the corona, we must first map and quantify its thermal structure," Fleishman notes.

"What we know of the corona's temperature comes from measuring EUV emissions produced by heavy ions in various states of ionization, which depends on their concentrations, as well as plasma temperature and density," he adds. "The non-uniform distribution of these ions in space and time appears to affect the temperature of the corona."

The metal ions enter the corona when variously sized solar flares destroy the traps, and they are evaporated into flux loops in the upper atmosphere.

Energy releases in solar flares and associated forms of eruptions occur when magnetic field lines, with their powerful underlying electric currents, are twisted beyond a critical point that can be measured by the number of turns in the twist. The largest of these eruptions cause what is known as space weather - the radiation, energetic particles and magnetic field releases from the Sun powerful enough to cause severe effects in Earth's near environment, such as the disruption of communications, power lines and navigation systems.

It is only through recent advances in imaging capabilities that solar scientists can now take routine measurements of photospheric magnetic field vectors from which to compute the vertical component of electric currents, and, simultaneously, quantify the EUV emissions produced by heavy ions.

"Prior to these observations, we have only accounted for the coronal loops filled with heavy ions, but we could not account for flux tubes depleted of them," Fleishman says. "Now all of these poorly understood phenomena have a solid physical foundation that we can observe. We are able to better quantify the corona's thermal structure and gain a clearer understanding of why ion distribution in the solar atmosphere is non-uniform in space and variable in time."

Scientists at NJIT's Big Bear Solar Observatory (BBSO) have captured the first high-resolution images of magnetic fields and plasma flows originating deep below the Sun's surface, tracing the evolution of sunspots and magnetic flux ropes through the chromosphere before their dramatic appearance in the corona as flaring loops.

EUV emissions, however, can only be observed from space. The SDO, aboard a spacecraft launched in 2010, measures both magnetic field and EUV emissions from the whole Sun. The implications of the corona's temperature structure, and whether it allows the Sun to transfer more heat into the solar system, "is the subject of future study," Fleishman says.

Research paper


Related Links
New Jersey Institute of Technology
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
Flares in the universe can now be studied on Earth
Gothenburg, Sweden (SPX) May 03, 2018
Solar flares, cosmic radiation, and the northern lights are well known phenomena. But exactly how their enormous energy arises is not as well understood. Now, physicists at Chalmers University of Technology, Sweden, have discovered a new way to study these spectacular space plasma phenomena in a laboratory environment. The results have been published in the renowned journal Nature Communications. "Scientists have been trying to bring these space phenomena down to earth for a decade. With our ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

Tourism nearly a tenth of global CO2 emissions

Why plants are so sensitive to gravity: The lowdown

SOLAR SCIENCE
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

SpaceX's Dragon cargo ship returns to Earth

Reduce, Reuse, Rockets?

Return of SpaceX cargo ship delayed by rough seas

SOLAR SCIENCE
Mars growth stunted by early giant planetary instability

InSight probe to survey Mars for secrets inside the planet

NASA's newest Mars lander to study quakes on Red Planet

NASA blasts off Mars-bound spaceship, InSight, to study quakes

SOLAR SCIENCE
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

SOLAR SCIENCE
In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

Australian Space Agency Lost In Canberra

China's communication satellites occupy niche in world market

SOLAR SCIENCE
Lasers in Space: Earth Mission Tests New Technology

China rejects US military claims of laser attacks on pilots

AF plans to accelerate defendable space with Next-Gen OPIR

Can this invasive exotic pest make better materials for industry and medicine?

SOLAR SCIENCE
An Exoplanet Atmosphere Free of Clouds

Dutch astronomers photograph possible toddler planet by chance

The Cheops ccience instrument arrives in Madrid

Hubble detects helium in the atmosphere of an exoplanet for the first time

SOLAR SCIENCE
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.