. 24/7 Space News .
TIME AND SPACE
When materials differentiate between past and future
by Staff Writers
Dresden, Germany (SPX) May 19, 2020

Magnetic fields inside a superconductor with broken time-reversal symmetry: Red and blue arrows illustrate the direction and strength of the internal magnetic fields for forward and backward time development.

What happened yesterday and what will happen tomorrow are usually two different and quite independent matters. The past and the future of human life are not symmetric and therefore not reversible. In physics, this is different. The fundamental forces of nature in elementary particles, atoms and molecules are symmetric with respect to their development in time: Forwards or backwards makes no difference, scientists call this a time-reversal symmetry.

For decades this symmetry was also found in all superconductors. Superconductors are materials which can conduct electrical currents at low temperatures without energy dissipation. One of their major applications is the efficient generation of strong magnetic fields, for example in magnetic resonance imaging (MRI) diagnosis.

Approximately 99% of all known superconducting materials are time-reversal symmetric.

However, for some years, physicists have been discovering new superconductors which brake time-reversal symmetry. To explain these observations, the basic mechanism of superconductivity, which has been known for more than 75 years, had to be modified considerably. Only these novel superconductors are able to spontaneously generate constant internal magnetic fields. This can lead to new applications, for example in quantum computing devices.

An international research team led by Dr. Vadim Grinenko und Prof. Hans-Henning Klauss from the Institute of Solid State and Materials Physics at TU Dresden discovered this new magnetic state with broken time-reversal symmetry in iron-based superconductors. The synthesis of this versatile class of intermetallic compounds is comparatively simple. Therefore, these iron-based superconductors have an enormous potential for applications.

"In our study, we show that the iron-based superconductors discovered more than twelve years ago continue to reveal new quests for fundamental research as well as chances for new applications," states Prof. Hans-Henning Klauss.

Research Report: 'Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state'


Related Links
Technische Universitat Dresden
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Physics laws cannot always turn back time
Amsterdam, The Netherlands (SPX) Mar 24, 2020
If three or more objects move around each other, history cannot be reversed. That is the conclusion of an international team of researchers based on computer simulations of three black holes orbiting each other. The researchers, led by the Dutch astronomer Tjarda Boekholt, publish their findings in the April issue of the journal The Monthly Notices of the Royal Astronomical Society. Most basic laws in physics have no problem with the direction in which they run. They are, as scientists call it, sy ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Funds Artemis Student Challenges to Inspire Space Exploration

Google affiliate abandons futuristic neighborhood project

Astronauts Leave "Microbial Fingerprint" on Space Station

Spider eyes in space

TIME AND SPACE
Three types of rockets to shoulder construction of China's space station

Launch Complex 39B prepared to support Artemis I

Firefly Aerospace achieves AS9100 Quality Certification and readies for first Firefly Alpha launch

Express satellites to be launched on 30 July, Proton-M repairs to end in June

TIME AND SPACE
NASA's Perseverance Rover Spacecraft Put in Launch Configuration

NASA Perseverance Mars Rover Scientists Train in the Nevada Desert

NASA's Perseverance Rover Mission Getting in Shape for Launch

Perseverance Presses On, Remains Targeted for Summer Launch

TIME AND SPACE
China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

China's new spacecraft returns to Earth: official

China's space test hits snag with capsule 'anomaly'

TIME AND SPACE
Inmarsat launches solution for the rail industry

ThinKom completes Antenna Interoperability Demonstrations on Ku-Band LEO constellation

Building satellites amid COVID-19

Infostellar has raised a total of $3.5M in convertible bonds

TIME AND SPACE
Ultra-long-working-distance spectroscopy with 3D-printed aspherical microlenses

China tests 3D printing in space for first time

German 3D printing buffs pitch in with virus-fighting network

Special effects and virtual guests: China weddings go online

TIME AND SPACE
New 'planetary quarantine' report reviewing risks of alien contamination

Life on the rocks helps scientists understand how to survive in extreme environments

Study: Life might survive, and thrive, in a hydrogen world

Exoplanets: How we'll search for signs of life

TIME AND SPACE
Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter probe JUICE: Final integration in full swing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.