. | . |
What will happen when our sun dies? by Staff Writers Manchester UK (SPX) May 08, 2018
Scientists agree the sun will die in approximately 10 billion years, but they weren't sure what would happen next...until now. A team of international astronomers, including Professor Albert Zijlstra from the University of Manchester, predict it will turn into a massive ring of luminous, interstellar gas and dust, known as a planetary nebula. A planetary nebula marks the end of 90% of all stars active lives and traces the star's transition from a red giant to a degenerate white dwarf. But, for years, scientists weren't sure if the sun in our galaxy would follow the same fate: it was thought to have too low mass to create a visible planetary nebula. To find out the team developed a new stellar, data-model that predicts the lifecycle of stars. The model was used to predict the brightness (or luminosity) of the ejected envelope, for stars of different masses and ages. Prof Zijslra explains: "When a star dies it ejects a mass of gas and dust - known as its envelope - into space. The envelope can be as much as half the star's mass. This reveals the star's core, which by this point in the star's life is running out of fuel, eventually turning off and before finally dying. "It is only then the hot core makes the ejected envelope shine brightly for around 10,000 years - a brief period in astronomy. This is what makes the planetary nebula visible. Some are so bright that they can be seen from extremely large distances measuring tens of millions of light years, where the star itself would have been much too faint to see." The model also solves another problem that has been perplexing astronomers for a quarter of a century. Approximately 25 years ago astronomers discovered that if you look at planetary nebulae in another galaxy, the brightest ones always have the same brightness. It was found that it was possible to see how far away a galaxy was just from the appearance of its brightest planetary nebulae. In theory it worked in any of type galaxy. But whilst the data suggested this was correct, the scientific models claimed otherwise. Prof Zijlstra adds: "Old, low mass stars should make much fainter planetary nebulae than young, more massive stars. This has become a source of conflict for the past for 25 years. "The data said you could get bright planetary nebulae from low mass stars like the sun, the models said that was not possible, anything less than about twice the mass of the sun would give a planetary nebula too faint to see." The new models show that after the ejection of the envelope, the stars heat up three times faster than found in older models. This makes it much easier for a low mass star, such as the sun, to form a bright planetary nebula. The team found that in the new models, the sun is almost exactly the lowest mass star that still produces a visible, though faint, planetary nebula. Stars even a few per cent smaller do not. Professor Zijlstra added: "We found that stars with mass less than 1.1 times the mass of the sun produce fainter nebula, and stars more massive than 3 solar masses brighter nebulae, but for the rest the predicted brightness is very close to what had been observed. Problem solved, after 25 years! "This is a nice result. Not only do we now have a way to measure the presence of stars of ages a few billion years in distant galaxies, which is a range that is remarkably difficult to measure, we even have found out what the sun will do when it dies!" The research is being published in Nature Astronomy on Monday 7th May.
Flares in the universe can now be studied on Earth Gothenburg, Sweden (SPX) May 03, 2018 Solar flares, cosmic radiation, and the northern lights are well known phenomena. But exactly how their enormous energy arises is not as well understood. Now, physicists at Chalmers University of Technology, Sweden, have discovered a new way to study these spectacular space plasma phenomena in a laboratory environment. The results have been published in the renowned journal Nature Communications. "Scientists have been trying to bring these space phenomena down to earth for a decade. With our ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |