24/7 Space News
STELLAR CHEMISTRY
Webb telescope captures its first direct images of carbon dioxide outside solar system
illustration only
Webb telescope captures its first direct images of carbon dioxide outside solar system
by Roberto Molar Candanosa for JHU News
Baltimore MD (SPX) Mar 18, 2025

The James Webb Space Telescope has captured its first direct images of carbon dioxide in a planet outside the solar system in HR 8799, a multiplanet system 130 light-years away that has long been a key target for planet formation studies.

The observations provide strong evidence that the system's four giant planets formed in much the same way as Jupiter and Saturn, by slowly building solid cores. They also confirm Webb can do more than infer atmospheric composition from starlight measurements-it can directly analyze the chemistry of exoplanet atmospheres.

"By spotting these strong carbon dioxide features, we have shown there is a sizable fraction of heavier elements, such as carbon, oxygen, and iron, in these planets' atmospheres. Given what we know about the star they orbit, that likely indicates they formed via core accretion, which for planets that we can directly see is an exciting conclusion," said William Balmer, a Johns Hopkins University astrophysicist who led the work.

An analysis of the observations, which also included a system 96 light-years away called 51 Eridani, appears in The Astrophysical Journal.

HR 8799 is a young system about 30 million years old, a fraction of our solar system's 4.6 billion years. Still hot from their violent formation, HR 8799 planets emit large amounts of infrared light that give scientists valuable data on how their formation compares to that of stars or brown dwarfs.

Giant planets can take shape in two ways: by slowly building solid cores that attract gas, like our solar system, or by rapidly collapsing from a young star's cooling disk into massive objects. Knowing which model is more common can give scientists clues to distinguish between the types of planets they find in other systems.

"Our hope with this kind of research is to understand our own solar system, life, and ourselves in comparison to other exoplanetary systems, so we can contextualize our existence," Balmer said. "We want to take pictures of other solar systems and see how they're similar or different when compared to ours. From there, we can try to get a sense of how weird our solar system really is-or how normal."

Very few exoplanets have been directly imaged, as distant planets are many thousands of times fainter than their stars. By capturing direct images at specific wavelengths only accessible with Webb, the team is paving the way for more detailed observations to determine whether the objects they see orbiting other stars are truly giant planets or objects such as brown dwarfs, which form like stars but don't accumulate enough mass to ignite nuclear fusion.

"We have other lines of evidence that hint at these four HR 8799 planets forming using this bottom-up approach" said Laurent Pueyo, an astronomer at the Space Telescope Science Institute who co-led the work. "How common is this for long period planets we can directly image? We don't know yet, but we're proposing more Webb observations, inspired by our carbon dioxide diagnostics, to answer that question."

The achievement was made possible by Webb's coronagraphs, which block light from bright stars as happens in a solar eclipse to reveal otherwise hidden worlds. This allowed the team to look for infrared light in wavelengths that reveal specific gases and other atmospheric details.

Targeting the 3-5 micrometer wavelength range, the team found that the four HR 8799 planets contain more heavy elements than previously thought, another hint that they formed in the same way as our solar system's gas giants. The observations also revealed the first-ever detection of the innermost planet, HR 8799 e, at a wavelength of 4.6 micrometers, and 51 Eridani b at 4.1 micrometers, showcasing Webb's sensitivity in observing faint planets close to bright stars.

In 2022, one of Webb's key observation techniques indirectly detected carbon dioxide in another exoplanet, called WASP-39 b, by tracking how its atmosphere altered starlight when it passed in front of its star.

"This is what scientists have been doing for transiting planets or isolated brown dwarfs since the launch of JWST," Pueyo said.

Remi Soummer, who directs the Optics Laboratory at the Space Telescope Science Institute and previously led Webb's coronagraph operations, added: "We knew JWST could measure colors of the outer planets in directly imaged systems. We have been waiting for 10 years to confirm that our finely tuned operations of the telescope would also allow us to access the inner planets. Now the results are in, and we can do interesting science with it."

The team hopes to use Webb's coronagraphs to analyze more giant planets and compare their composition to theoretical models.

"These giant planets have pretty big implications," Balmer said. "If you have these huge planets acting like bowling balls running through your solar system, they can either really disrupt, protect, or do a little bit of both to planets like ours, so understanding more about their formation is a crucial step to understanding the formation, survival, and habitability of Earth-like planets in the future."

Research Report:JWST-TST High Contrast: Living on the Wedge, or, NIRCam Bar Coronagraphy Reveals CO2 in the HR 8799 and 51 Eri Exoplanets' Atmospheres

Related Links
Johns Hopkins University
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Astronomers Reveal Detailed 3D Map of Cosmic Dust
Berlin, Germany (SPX) Mar 14, 2025
Observing distant stars and galaxies comes with a challenge: how much of what we see is affected by cosmic dust? The presence of interstellar dust clouds can make celestial objects appear redder and dimmer than they actually are, an effect known as reddening and extinction. To address this, two astronomers have created an intricate 3D map that provides an unprecedented view of dust distribution in the Milky Way, offering a clearer perspective on the universe. Cosmic dust interacts with starlight i ... read more

STELLAR CHEMISTRY
Moon navigation system advances with Thales Alenia Space leading orbital segment

Spaceo leads ESA project to deploy inflatable sail for satellite disposal

Smiles, thumbs ups and a safe return for 'stranded' NASA astronauts

ATLAS joins Viasat to enhance NASA's satellite ground services

STELLAR CHEMISTRY
China's Ceres 1 completes 18th flight delivering eight satellites to orbit

Norwegian Space Agency partners with Isar Aerospace for satellite launch from Andoya Spaceport

Rocket Lab boosts Varda's space manufacturing with third successful orbital mission

From Contract to Orbit in Record Time for OroraTech Satellite Deployment

STELLAR CHEMISTRY
NASA and USGS join forces to advance space resource detection

Navigating a Slanted River

Mars Study Suggests Mid-Crust Water May Not Be Essential to Data Interpretation

Scientists Develop New Technique to Detect Life in Martian Rock Samples

STELLAR CHEMISTRY
Hong Kong spearheads lunar robotics initiative for national space program

Joint initiatives to propel China's commercial space industry forward

China advances manned lunar program for 2030 moon landing

Shenzhou XIX crew successfully tests pipeline inspection robot on space station

STELLAR CHEMISTRY
Space Norway signs Intelsat as lead broadcaster on THOR 8 satellite

SKY Perfect JSAT contracts Thales Alenia Space for JSAT 32 satellite project

Globalstar launches advanced control center in Louisiana to boost satellite operations

What to know about the satellite communications race

STELLAR CHEMISTRY
T2S Solutions acquires Blue Marble to bolster space technology portfolio

Space Forge secures UK approval to launch first orbital manufacturing satellite

Omni Design unveils high-speed data converter IP for next-gen satellite systems

Axiom Space selects Siemens software to boost orbital infrastructure programs

STELLAR CHEMISTRY
Microbial traces found in desert rocks hint at unknown life form

'Dark oxygen': a deep-sea discovery that has split scientists

TOI-1453 system hosts contrasting super-Earth and low-mass sub-Neptune

Signs of alien life may be hiding in these gases

STELLAR CHEMISTRY
NASA's Hubble Telescope May Have Uncovered a Triple System in the Kuiper Belt

NASA's Europa Clipper Leverages Mars for Critical Gravity Assist

Oort cloud resembles a galaxy, new study finds

The PI's Perspective: A New Mission Update for the New Year

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.