24/7 Space News
STELLAR CHEMISTRY
Webb reveals intricate networks of gas, dust in nearby galaxies
The Mid-Infrared Instrument (MIRI) on NASA's James Webb Space Telescope took this image of NGC 1433, a barred spiral galaxy with a particularly bright core surrounded by double star-forming rings. The observations reveal cavernous bubbles of gas where forming stars have released energy. Credit: NASA, ESA, CSA, and J. Lee (NOIRLab). Image processing: A. Pagan (STScI)
ADVERTISEMENT
     
Webb reveals intricate networks of gas, dust in nearby galaxies
by Staff Writers
Baltimore MD (SPX) Feb 17, 2023

Peering through obscuring clouds of dust, the MIRI instrument has revealed networks of giant cavities and blown-out bubbles in the gaseous arms of distant galaxies. Researchers using NASA's James Webb Space Telescope are getting their first look at star formation, gas, and dust in nearby galaxies with unprecedented resolution at infrared wavelengths.

The data has enabled an initial collection of 21 research papers which provide new insight into how some of the smallest-scale processes in our universe - the beginnings of star formation - impact the evolution of the largest objects in our cosmos: galaxies.

The largest survey of nearby galaxies in Webb's first year of science operations is being carried out by the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration, involving more than 100 researchers from around the globe. The Webb observations are led by Janice Lee, Gemini Observatory chief scientist at the National Science Foundation's NOIRLab and affiliate astronomer at the University of Arizona in Tucson.

The team is studying a diverse sample of 19 spiral galaxies, and in Webb's first few months of science operations, observations of five of those targets - M74, NGC 7496, IC 5332, NGC 1365, and NGC 1433 - have taken place. The results are already astounding astronomers.

"The clarity with which we are seeing the fine structure certainly caught us by surprise," said team member David Thilker of Johns Hopkins University in Baltimore, Maryland.

"We are directly seeing how the energy from the formation of young stars affects the gas around them, and it's just remarkable," said team member Erik Rosolowsky of the University of Alberta, Canada.

The images from Webb's Mid-Infrared Instrument (MIRI) reveal the presence of a network of highly structured features within these galaxies - glowing cavities of dust and huge cavernous bubbles of gas that line the spiral arms. In some regions of the nearby galaxies observed, this web of features appears built from both individual and overlapping shells and bubbles where young stars are releasing energy.

"Areas which are completely dark in Hubble imaging light up in exquisite detail in these new infrared images, allowing us to study how the dust in the interstellar medium has absorbed the light from forming stars and emitted it back out in the infrared, illuminating an intricate network of gas and dust," said team member Karin Sandstrom of the University of California, San Diego.

The high-resolution imaging needed to study these structures has long evaded astronomers - until Webb came into the picture.

"The PHANGS team has spent years observing these galaxies at optical, radio, and ultraviolent wavelengths using NASA's Hubble Space Telescope, the Atacama Large Millimeter/Submillimeter Array, and the Very Large Telescope's Multi Unit Spectroscopic Explorer," added team member Adam Leroy of the Ohio State University. "But the earliest stages of a star's life cycle have remained out of view because the process is enshrouded within gas and dust clouds."

Webb's powerful infrared capabilities can pierce through the dust to connect the missing puzzle pieces.

For example, specific wavelengths observable by MIRI (7.7 and 11.3 microns) and Webb's Near-Infrared Camera (3.3 microns) are sensitive to emission from polycyclic aromatic hydrocarbons, which play a critical role in the formation of stars and planets. These molecules were detected by Webb in the first observations by the PHANGS program.

Studying these interactions at the finest scale can help provide insights into the larger picture of how galaxies have evolved over time.

"Because these observations are taken as part of what's called a treasury program, they are available to the public as they are observed and received on Earth," said Eva Schinnerer of the Max Planck Institute for Astronomy in Heidelberg, Germany, and leader of the PHANGS collaboration.

The PHANGS team will work to create and release data sets that align Webb's data to each of the complementary data sets obtained previously from the other observatories, to help accelerate discovery by the broader astronomical community.

"Thanks to the telescope's resolution, for the first time we can conduct a complete census of star formation, and take inventories of the interstellar medium bubble structures in nearby galaxies beyond the Local Group," Lee said. "That census will help us understand how star formation and its feedback imprint themselves on the interstellar medium, then give rise to the next generation of stars, or how it actually impedes the next generation of stars from being formed."

The research by the PHANGS team is being conducted as part of General Observer program 2107. The team's initial findings, composed of 21 individual studies, were recently published in a special focus issue of The Astrophysical Journal Letters.

Research Report:PHANGS-JWST First Results

Related Links
Webb Space Telescope
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Webb uncovers new details in Pandora's Cluster
Baltimore MD (SPX) Feb 16, 2023
Astronomers have revealed the latest deep field image from NASA's James Webb Space Telescope, featuring never-before-seen details in a region of space known as Pandora's Cluster (Abell 2744). Webb's view displays three clusters of galaxies - already massive - coming together to form a megacluster. The combined mass of the galaxy clusters creates a powerful gravitational lens, a natural magnification effect of gravity, allowing much more distant galaxies in the early universe to be observed by using the ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
Biology and Robotics Research Occupy Crew

Machine learning techniques identify thousands of new cosmic objects

Former football player revamps NASA air filter invention

Russia 'expected' to launch rescue ship to ISS on Feb 24: official

STELLAR CHEMISTRY
Inmarsat-6 F2 marks 12th SpaceX launch of 2023

Japan aborts launch of new flagship rocket

SpaceX faces a $175,000 penalty for failure to report launch data to FAA

SpaceX launches Falcon 9 rocket from Florida, part of Inmarsat program

STELLAR CHEMISTRY
Perseverance set to begin third year on Mars at Jezero Crater

Hope probe to move to a new Mars orbit and observe deimos

NASA study seeks to understand impact effects on Mars rocks

Sols 3744-3745: The One That Got Away

STELLAR CHEMISTRY
Two crews set for Tiangong station in '23

China solicits logos for manned space missions in 2023

China's space station experiments pave way for new space technology

Large number of launches planned

STELLAR CHEMISTRY
How to Write a Discussion Post About Space Exploration

Yahsat and Cobham SATCOM complete CDR for Thuraya's Next satellite

Fortuna Investments announces US expansion and first space investment

Space Daily retools to AI/ML centric Content Management System

STELLAR CHEMISTRY
High efficiency mid- and long-wave optical parametric oscillator pump source and its applications

D-Orbit signs launch contract with Patriot Infovention

'Magic' solvent creates stronger thin films

Space Station research announcement for advanced materials and manufacturing open now

STELLAR CHEMISTRY
Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?

Very Large Telescope captures direct images of bright exoplanet

Four classes of planetary systems

Team Aims To Find Earth 2.0

STELLAR CHEMISTRY
New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

SwRI models explain canyons on Pluto moon

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.