24/7 Space News
STELLAR CHEMISTRY
Webb makes first detection of crucial carbon molecule
These Webb images show a part of the Orion Nebula known as the Orion Bar. The largest image, on the left, is from Webb's NIRCam (Near-Infrared Camera) instrument. At upper right, the telescope is focused on a smaller area using Webb's MIRI (Mid-Infrared Instrument). At the very center of the MIRI area is a young star system with a protoplanetary disk named d203-506. The pullout at the bottom right displays a combined NIRCam and MIRI image of this young system.
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
Webb makes first detection of crucial carbon molecule
by Staff Writers
Baltimore MD (SPX) Jun 27, 2023

A team of international scientists has used NASA's James Webb Space Telescope to detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.

Carbon compounds form the foundations of all known life, and as such are particularly interesting to scientists working to understand both how life developed on Earth, and how it could potentially develop elsewhere in our universe. The study of interstellar organic (carbon-containing) chemistry, which Webb is opening in new ways, is an area of keen fascination to many astronomers.

The unique capabilities of Webb made it an ideal observatory to search for this crucial molecule. Webb's exquisite spatial and spectral resolution, as well as its sensitivity, all contributed to the team's success. In particular, Webb's detection of a series of key emission lines from CH3+ cemented the discovery.

"This detection not only validates the incredible sensitivity of Webb but also confirms the postulated central importance of CH3+ in interstellar chemistry," said Marie-Aline Martin-Drumel of the University of Paris-Saclay in France, a member of the science team.While the star in d203-506 is a small red dwarf, the system is bombarded by strong ultraviolet (UV) light from nearby hot, young, massive stars. Scientists believe that most planet-forming disks go through a period of such intense UV radiation, since stars tend to form in groups that often include massive, UV-producing stars.

Typically, UV radiation is expected to destroy complex organic molecules, in which case the discovery of CH3+ might seem to be a surprise. However, the team predicts that UV radiation might actually provide the necessary source of energy for CH3+ to form in the first place. Once formed, it then promotes additional chemical reactions to build more complex carbon molecules.

Broadly, the team notes that the molecules they see in d203-506 are quite different from typical protoplanetary disks. In particular, they could not detect any signs of water.

"This clearly shows that ultraviolet radiation can completely change the chemistry of a protoplanetary disk. It might actually play a critical role in the early chemical stages of the origins of life," elaborated Olivier Berne of the French National Centre for Scientific Research in Toulouse, lead author of the study.

These findings, which are from the PDRs4ALL Early Release Science program, have been published in the journal Nature.

Related Links
PDRs4ALL Early Release Science Program
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Molecular filament shielded young solar system from supernova
Tokyo, Japan (SPX) Jun 23, 2023
Isotope ratios found in meteorites suggest that a supernova exploded nearby while the Sun and Solar System were still forming. But the blast wave from a supernova that close could have potentially destroyed the nascent Solar System. New calculations shows that a filament of molecular gas, which is the birth cocoon of the Solar System, aided the capture of the isotopes found in the meteorites, while acting as a buffer protecting the young Solar System from the nearby supernova blast. Primitive mete ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
Virgin Galactic's use of the 'Overview Effect' to promote space tourism is a terrible irony

Diving into practice

Schools, museums, libraries can apply to receive artifacts from NASA

Catastrophic failure assessment of sealed cabin for ultra large manned spacecraft

STELLAR CHEMISTRY
Leidos' MACH-TB program successfully completes 1st test launch

Purdue-launched solid rocket motor-maker Adranos flies off with Anduril

Virginia Tech leads multi-institution research on polymeric solid fuel combustion

Ariane 6 progress toward inaugural flight: ArianeGroup, Les Mureaux, France

STELLAR CHEMISTRY
Zhurong rover detects extremely weak magnetic fields on surface of Mars' Utopia Basin

Back on Track: Sols 3871-3872

Advanced space technology enabling 2024 ESCAPADE mission to Mars

Welcome to Kalavryta: Sols 3866-3867

STELLAR CHEMISTRY
Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

Scientific experimental samples brought back to Earth, delivered to scientists

STELLAR CHEMISTRY
AST SpaceMobile and Maritime Launch Services Boost Capital with Stock Offerings

Apex raises $16M in Series A funding

AST SpaceMobile confirms 4G capabilities to everyday smartphones directly from space

Seven US companies collaborate with NASA to advance space capabilities

STELLAR CHEMISTRY
Astroscale expands operations to France and secures contract with CNES

NASA engineers help create a virtual world of data

Astroscale's ELSA-d Prepares for Controlled De-orbit in Final Mission Phase

Unveiling the secrets of liquid iron under extreme conditions

STELLAR CHEMISTRY
Reconstructing alien astronomers' view of our home galaxy's chemistry

Webb Rules Out Thick Carbon Dioxide Atmosphere for Rocky Exoplanet

New era of exoplanet discovery begins with images of 'Jupiter's Younger Sibling'

Evidence of the amino acid tryptophan found in space

STELLAR CHEMISTRY
Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Juno captures lightning bolts above Jupiter's north pole

Colorful Kuiper Belt puzzle solved by UH researchers

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.