24/7 Space News
STELLAR CHEMISTRY
Webb locates dust reservoirs in two supernovae
Images from NASA's James Webb Space Telescope reveal large amounts of dust within Supernova 2004et and Supernova 2017eaw. These supernovae are located in spiral galaxy NGC 6946, 22 million light-years away from Earth. The hexagonal shape of SN 2004et in Webb's image is an artifact of the telescope's mirror and struts - when the bright light of a point source is observed, the light interacts with the sharp edges of the telescope, creating diffraction spikes. In these images, blue, green, and red were assigned to Webb's MIRI data at 10; 11.3, 12.8, and 15.0; and 18 and 21 microns (F1000W; F1130, F1280W, and F1500; and F1800W and F2100W, respectively).
ADVERTISEMENT
     
Webb locates dust reservoirs in two supernovae
by Agency Writers
Baltimore MD (SPX) Jul 06, 2023

Researchers using NASA's James Webb Space Telescope have made major strides in confirming the source of dust in early galaxies. Observations of two Type II supernovae, Supernova 2004et (SN 2004et) and Supernova 2017eaw (SN 2017eaw), have revealed large amounts of dust within the ejecta of each of these objects. The mass found by researchers supports the theory that supernovae played a key role in supplying dust to the early universe.

Dust is a building block for many things in our universe - planets in particular. As dust from dying stars spreads through space, it carries essential elements to help give birth to the next generation of stars and their planets. Where that dust comes from has puzzled astronomers for decades. One significant source of cosmic dust could be supernovae - after the dying star explodes, its leftover gas expands and cools to create dust.

"Direct evidence of this phenomenon has been slim up to this point, with our capabilities only allowing us to study the dust population in one relatively nearby supernova to date - Supernova 1987A, 170,000 light-years away from Earth," said lead author Melissa Shahbandeh of Johns Hopkins University and the Space Telescope Science Institute in Baltimore, Maryland. "When the gas cools enough to form dust, that dust is only detectable at mid-infrared wavelengths provided you have enough sensitivity."

For supernovae more distant than SN 1987A like SN 2004et and SN 2017eaw, both in NGC 6946 about 22 million light-years away, that combination of wavelength coverage and exquisite sensitivity can only be obtained with Webb's MIRI (Mid-Infrared Instrument).

The Webb observations are the first breakthrough in the study of dust production from supernovae since the detection of newly formed dust in SN 1987A with the Atacama Large Millimeter/submillimeter Array (ALMA) telescope nearly a decade ago.

Another particularly intriguing result of their study isn't just the detection of dust, but the amount of dust detected at this early stage in the supernova's life. In SN 2004et, the researchers found more than 5,000 Earth masses of dust.

"When you look at the calculation of how much dust we're seeing in SN 2004et especially, it rivals the measurements in SN 1987A, and it's only a fraction of the age," added program lead Ori Fox of the Space Telescope Science Institute. "It's the highest dust mass detected in supernovae since SN 1987A."

Observations have shown astronomers that young, distant galaxies are full of dust, but these galaxies are not old enough for intermediate mass stars, like the Sun, to have supplied the dust as they age. More massive, short-lived stars could have died soon enough and in large enough numbers to create that much dust.

While astronomers have confirmed that supernovae produce dust, the question has lingered about how much of that dust can survive the internal shocks reverberating in the aftermath of the explosion. Seeing this amount of dust at this stage in the lifetimes of SN 2004et and SN 2017eaw suggests that dust can survive the shockwave - evidence that supernovae really are important dust factories after all.

Researchers also note that the current estimations of the mass may be the tip of the iceberg. While Webb has allowed researchers to measure dust cooler than ever before, there may be undetected, colder dust radiating even farther into the electromagnetic spectrum that remains obscured by the outermost layers of dust.

The researchers emphasized that the new findings are also just a hint at newfound research capabilities into supernovae and their dust production using Webb, and what that can tell us about the stars from which they came.

"There's a growing excitement to understand what this dust also implies about the core of the star that exploded," Fox said. "After looking at these particular findings, I think our fellow researchers are going to be thinking of innovative ways to work with these dusty supernovae in the future."

SN 2004et and SN2017eaw are the first of five targets included in this program. The observations were completed as part of Webb General Observer program 2666. The paper was published in the Monthly Notices of the Royal Astronomical Society on July 5.

Related Links
Webb Telescope
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Hawaii observatories play criical role adding color to new space mission
Hawaii HI (SPX) Jul 03, 2023
Observing billions of galaxies across more than a third of the sky and building a 3D map of the universe are all part of the Euclid mission that the European Space Agency launched with its Euclid satellite from Cape Canaveral, Florida. Euclid's dataset is getting a big helping hand from observations taken at three observatories in Hawaii. The Euclid satellite mission will spend more than six years in space and involve more than 2,000 scientists, including astronomers in Hawaii. Unlike the James We ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
NASA expands task orders for spacewalking, moonwalking suits

Winning spacesuit designs

NASA expands options for spacewalking, moonwalking suits, services

Space Act Agreement with NASA will advance UArizona engagement in human spaceflight

STELLAR CHEMISTRY
Canadian student rocketry group reaches new heights with Spaceport Nova Scotia's first launch

Southern Launch reveals new logo and branding

SpaceX's Falcon 9 first-stage booster breaks the record on its 16th flight

LandSpace to launch methane-propelled rocket

STELLAR CHEMISTRY
Planning Take Two: Sols 3885-3886

First CHAPEA Crew Begins 378-Day Mission

Martian dunes eroded by a shift in prevailing winds after the planet's last ice age

Sols 3882-3884: Weekend Routine for a Red Rover

STELLAR CHEMISTRY
China Aerospace Foundation and Asia-Pacific Space Cooperation Organization Sign Cooperation MOU

Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

STELLAR CHEMISTRY
Commanding role for Andreas in space

JUPITER 3 arrives at Cape Canaveral for launch

Saudi Space Commission holds several meetings with Chinese space companies

ITU Radio Regulations Board approves waiver for Rivada LEO constellation

STELLAR CHEMISTRY
High-Velocity Impacts Explored in Experimental Study

Solving the RIME deployment mystery

iQPS initiates a full-scale study to leverage SkyCompass-1 optical data relay service

Microsoft-Activision deal back on track after US court win

STELLAR CHEMISTRY
Study increases probability of finding water on other worlds by x100

'Sandwich' discovery offers new explanation for planet formation

'Like a mirror': Astronomers identify most reflective exoplanet

Astronomers discover elusive planet responsible for spiral arms around its star

STELLAR CHEMISTRY
First ultraviolet data collected by ESA's JUICE mission

Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Juno captures lightning bolts above Jupiter's north pole

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.