. | . |
Vast phytoplankton blooms may be lurking beneath Antarctic ice by Staff Writers Auckland, New Zealand (SPX) Nov 17, 2022
Until now, we thought the packed sea ice of the Southern Ocean blocked all light from reaching the sea beneath, preventing phytoplankton - tiny algae which are the base of aquatic food webs - from growing there. The less light available, the less the phytoplankton can photosynthesize and therefore the less phytoplankton there will be, heavily restricting life beneath the ice. But research inspired by increasing under-ice blooms of phytoplankton in the Arctic has shown that Antarctic waters also have unexpected denizens, indicating that there is underestimated ecological variability under the ice. Blooms are often spotted as soon as the sea ice begins its seasonal retreat, supported by plenty of light and freshwater with high iron content. Yet a team led by Dr Christopher Horvat of Brown University and the University of Auckland suspected that there would already be potential phytoplankton blooms in waiting. Writing in Frontiers in Marine Science, they described using sampling from independent BGC-Argo floats and climate model output to estimate light availability beneath the ice to test this hypothesis. "We found that nearly all examples of floats profiling under Antarctic sea ice record increases in phytoplankton before sea ice retreats," said Horvat. "In many cases, we observed significant blooms." Horvat also pointed out that the floats only sampled a very small part of the millions of square kilometers of sea ice that might host these under-ice blooms, so there may be many more hidden phytoplankton blooms with the potential to support other life out there.
Floating laboratories The key measurements in this case were levels of chlorophyll-a, a pigment shared by all phytoplankton, and particulate backscatter, which can be converted to an estimate of phytoplankton carbon because phytoplankton scatter light in proportion to their size and concentration. In the end, the team used data from 51 floats that made 2197 under-ice dives from 2014-2021, which they collected into 79 sequences of measurements. "We used a new data product derived from a new NASA satellite, the ICESat-2 laser altimeter, to understand the compactness of ice around Antarctica, and with a suite of global climate models considered how much light reached the upper ocean," said Horvat. "We found that 50% or more of the under-ice Antarctic might support under-ice blooms, because sea ice in the Southern Ocean is comprised of discrete floes, and small areas of open water permit light and therefore photosynthetic life."
Hidden ecosystems? However, the authors cautioned that the floats could sample under the ice but couldn't return data from these positions, meaning that the coordinates for sample locations are not completely precise. "It is possible some of the high productivity events might be recorded in regions with low sea ice cover," Horvat said. "Because the time we observe these blooms is close to when sea ice retreats, it is also possible some of the phytoplankton come from processes occurring outside of the sea ice zone, though we consider this unlikely given the sheer number of high-productivity measurements we found." The implications for Antarctic ecosystems could be significant. "Higher trophic levels migrate to where the productivity is, and if it is under the ice, one might expect the food web follows," Horvat pointed out. Further research will be needed to understand how these hidden ecosystems function, and whether the phytoplankton blooms attract predators and prey beneath the ice.
Research Report:Evidence For Phytoplankton Blooms Under Antarctic Sea Ice
Deeper understanding of the icy depths Hokkaido, Japan (SPX) Oct 21, 2022 lScientists have uncovered new details of how ice forming below the ocean surface in Antarctica provides cold dense water that sinks to the seabed in an important aspect of global water circulation. The results, published in the journal Science Advances, come from a team at the Hokkaido University's Institute of Low Temperature Science, its Arctic Research Center, and the Faculty of Fisheries science, working with scientists at Japan's National Institute of Polar Research and Aerospace Exploration ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |