. 24/7 Space News .
WATER WORLD
Vapor-collection technology saves water while clearing the air
by David L. Chandler for MIT News
Boston MA (SPX) Aug 05, 2021

file illustration only

About two-fifths of all the water that gets withdrawn from lakes, rivers, and wells in the U.S. is used not for agriculture, drinking, or sanitation, but to cool the power plants that provide electricity from fossil fuels or nuclear power. Over 65 percent of these plants use evaporative cooling, leading to huge white plumes that billow from their cooling towers, which can be a nuisance and, in some cases, even contribute to dangerous driving conditions.

Now, a small company based on technology recently developed at MIT by the Varanasi Research Group is hoping to reduce both the water needs at these plants and the resultant plumes - and to potentially help alleviate water shortages in areas where power plants put pressure on local water systems.

The technology is surprisingly simple in principle, but developing it to the point where it can now be tested at full scale on industrial plants was a more complex proposition. That required the real-world experience that the company's founders gained from installing prototype systems, first on MIT's natural-gas-powered cogeneration plant and then on MIT's nuclear research reactor.

In these demanding tests, which involved exposure to not only the heat and vibrations of a working industrial plant but also the rigors of New England winters, the system proved its effectiveness at both eliminating the vapor plume and recapturing water. And, it purified the water in the process, so that it was 100 times cleaner than the incoming cooling water. The system is now being prepared for full-scale tests in a commercial power plant and in a chemical processing plant.

"Campus as a living laboratory"
The technology was originally envisioned by professor of mechanical engineering Kripa Varanasi to develop efficient water-recovery systems by capturing water droplets from both natural fog and plumes from power plant cooling towers. The project began as part of doctoral thesis research of Maher Damak PhD '18, with funding from the MIT Tata Center for Technology and Design, to improve the efficiency of fog-harvesting systems like the ones used in some arid coastal regions as a source of potable water. Those systems, which generally consist of plastic or metal mesh hung vertically in the path of fogbanks, are extremely inefficient, capturing only about 1 to 3 percent of the water droplets that pass through them.

Varanasi and Damak found that vapor collection could be made much more efficient by first zapping the tiny droplets of water with a beam of electrically charged particles, or ions, to give each droplet a slight electric charge. Then, the stream of droplets passes through a wire mesh, like a window screen, that has an opposite electrical charge. This causes the droplets to be strongly attracted to the mesh, where they fall away due to gravity and can be collected in trays placed below the mesh.

Lab tests showed the concept worked, and the researchers, joined by Karim Khalil PhD '18, won the MIT $100K Entrepreneurship Competition in 2018 for the basic concept. The nascent company, which they called Infinite Cooling, with Damak as CEO, Khalil as CTO, and Varanasi as chairperson, immediately went to work setting up a test installation on one of the cooling towers of MIT's natural-gas-powered Central Utility Plant, with funding from the MIT Office of Sustainability. After experimenting with various configurations, they were able to show that the system could indeed eliminate the plume and produce water of high purity.

Professor Jacopo Buongiorno in the Department of Nuclear Science and Engineering immediately spotted a good opportunity for collaboration, offering the use of MIT's Nuclear Reactor Laboratory research facility for further testing of the system with the help of NRL engineer Ed Block. With its 24/7 operation and its higher-temperature vapor emissions, the plant would provide a more stringent real-world test of the system, as well as proving its effectiveness in an actual operating reactor licensed by the Nuclear Regulatory Commission, an important step in "de-risking" the technology so that electric utilities could feel confident in adopting the system.

After the system was installed above one of the plant's four cooling towers, testing showed that the water being collected was more than 100 times cleaner than the feedwater coming into the cooling system. It also proved that the installation - which, unlike the earlier version, had its mesh screens mounted vertically, parallel to the vapor stream - had no effect at all on the operation of the plant. Video of the tests dramatically illustrates how as soon as the power is switched on to the collecting mesh, the white plume of vapor immediately disappears completely.

The high temperature and volume of the vapor plume from the reactor's cooling towers represented "kind of a worst-case scenario in terms of plumes," Damak says, "so if we can capture that, we can basically capture anything."

Working with MIT's Nuclear Reactor Laboratory, Varanasi says, "has been quite an important step because it helped us to test it at scale. ... It really both validated the water quality and the performance of the system." The process, he says, "shows the importance of using the campus as a living laboratory. It allows us to do these kinds of experiments at scale, and also showed the ability to sustainably reduce the water footprint of the campus."

Far-reaching benefits
Power plant plumes are often considered an eyesore and can lead to local opposition to new power plants because of the potential for obscured views, and even potential traffic hazards when the obscuring plumes blow across roadways. "The ability to eliminate the plumes could be an important benefit, allowing plants to be sited in locations that might otherwise be restricted," Buongiorno says. At the same time, the system could eliminate a significant amount of water used by the plants and then lost to the sky, potentially alleviating pressure on local water systems, which could be especially helpful in arid regions.

The system is essentially a distillation process, and the pure water it produces could go into power plant boilers - which are separate from the cooling system - that require high-purity water. That might reduce the need for both fresh water and purification systems for the boilers.

What's more, in many arid coastal areas power plants are cooled directly with seawater. This system would essentially add a water desalination capability to the plant, at a fraction of the cost of building a new standalone desalination plant, and at an even smaller fraction of its operating costs since the heat would essentially be provided for free.

Contamination of water is typically measured by testing its electrical conductivity, which increases with the amount of salts and other contaminants it contains. Water used in power plant cooling systems typically measures 3,000 microsiemens per centimeter, Khalil explains, while the water supply in the City of Cambridge is typically around 500 or 600 microsiemens per centimeter. The water captured by this system, he says, typically measures below 50 microsiemens per centimeter.

Thanks to the validation provided by the testing on MIT's plants, the company has now been able to secure arrangements for its first two installations on operating commercial plants, which should begin later this year. One is a 900-megawatt power plant where the system's clean water production will be a major advantage, and the other is at a chemical manufacturing plant in the Midwest.

In many locations power plants have to pay for the water they use for cooling, Varanasi says, and the new system is expected to reduce the need for water by up to 20 percent. For a typical power plant, that alone could account for about a million dollars saved in water costs per year, he says.

"Innovation has been a hallmark of the U.S. commercial industry for more than six decades," says Maria G. Korsnick, president and CEO of the Nuclear Energy Institute, who was not involved in the research. "As the changing climate impacts every aspect of life, including global water supplies, companies across the supply chain are innovating for solutions. The testing of this innovative technology at MIT provides a valuable basis for its consideration in commercial applications."


Related Links
Nuclear Reactor Laboratory
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
In Spain, dozens of villages struggle for drinking water
Lastras De Cuellar, Spain (AFP) July 30, 2021
Less than two hours from Madrid, 76-year-old Francisca Benitez has to brush her teeth every night with bottled water because her village has no supply of drinking water. In Lastras de Cuellar in the central Castilla y Leon region, nitrates and arsenic have made the water undrinkable for the village's residents, who number 350 in winter and nearly 1,000 in summer. And across the country, dozens of villages are suffering the same fate because groundwater resources are at risk from agricultural p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Russia launches Nauka module to space station after years of delay

Blue Origin's first crewed flight minted four new astronauts

World's richest man Jeff Bezos blasts into space

With the HUMANS project, a message that space is for everyone

WATER WORLD
US watchdog upholds SpaceX's Moon lander contract

NASA performs field test of 3D imaging system for descent and landing

Lift off for UK spaceflight as regulations passed

SpaceX to launch NASA's Europa Clipper on Falcon Heavy rocket in 2024

WATER WORLD
Science in motion for ExoMars twin rover

Aerial Scouting of 'Raised Ridges' for Ingenuity's Flight 10

China's Mars rover travels 585 meters on red planet

InSight mission: Mars unveiled

WATER WORLD
Shanxi company helps astronauts keep fit in space

How Chinese astronauts stay healthy in space

China's five-star red flag flies proudly on red planet

China's Commercial Space Industry

WATER WORLD
Inmarsat unveils the communications network of the future

Space company in search for professionals

Funding partnerships launch the UK-Australia Space Bridge

Space, the final frontier for billionaire Richard Branson

WATER WORLD
'Metaverse': the next internet revolution?

Water as a metal - detected at BESSY II

Redwire to demonstrate In-Space Additive Manufacturing on ISS for Lunar operations

Let's face the liquid-liquid interface

WATER WORLD
Galileo Project to search for ET artifacts in galactic space

From the sun to the stars: A journey of exoplanet discovery begins

ALMA images moon-forming disk around alien world

Planetary shields will buckle under stellar winds from their dying stars

WATER WORLD
Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission

Juno tunes into Jovian radio triggered by Jupiter's volcanic moon Io

Ride with Juno as it flies past Jupiter and Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.