Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Vanishing friction
by Staff Writers
Boston MA (SPX) Jun 11, 2015


A new technique tunes friction between two surfaces, to the point where friction can vanish. MIT researchers developed a frictional interface at the atomic level. The blue corrugated surface represents an optical lattice; the red balls represent ions; the springs between them represent Coulomb forces between ions. By tuning the spacing of the ion crystal surface above to mismatch the bottom corrugated surface, friction disappears. The ions smoothly slide along the surface in a caterpillar-like motion. This discovery could aid in developing nanomachines, built from components the size of single molecules. Image courtesy Christine Daniloff and MIT.

Friction is all around us, working against the motion of tires on pavement, the scrawl of a pen across paper, and even the flow of proteins through the bloodstream. Whenever two surfaces come in contact, there is friction, except in very special cases where friction essentially vanishes - a phenomenon, known as "superlubricity," in which surfaces simply slide over each other without resistance.

Now physicists at MIT have developed an experimental technique to simulate friction at the nanoscale. Using their technique, the researchers are able to directly observe individual atoms at the interface of two surfaces and manipulate their arrangement, tuning the amount of friction between the surfaces. By changing the spacing of atoms on one surface, they observed a point at which friction disappears.

Vladan Vuletic, the Lester Wolfe Professor of Physics at MIT, says the ability to tune friction would be helpful in developing nanomachines - tiny robots built from components the size of single molecules. Vuletic says that at the nanoscale, friction may exact a greater force - for instance, creating wear and tear on tiny motors much faster than occurs at larger scales.

"There's a big effort to understand friction and control it, because it's one of the limiting factors for nanomachines, but there has been relatively little progress in actually controlling friction at any scale," Vuletic says. "What is new in our system is, for the first time on the atomic scale, we can see this transition from friction to superlubricity."

Friction and force fields
The team simulated friction at the nanoscale by first engineering two surfaces to be placed in contact: an optical lattice, and an ion crystal.

The optical lattice was generated using two laser beams traveling in opposite directions, whose fields add up to form a sinusoidal periodic pattern in one dimension. This so-called optical lattice is similar to an egg carton, where each peak represents a maximum electric potential, while each trough represents a minimum. When atoms travel across such an electric field, they are drawn to places of minimum potential - in this case, the troughs.

Vuletic then engineered a second surface: an ion crystal - essentially, a grid of charged atoms - in order to study friction's effects, atom by atom. To generate the ion crystal, the group used light to ionize, or charge, neutral ytterbium atoms emerging from a small heated oven, and then cooled them down with more laser light to just above absolute zero. The charged atoms can then be trapped using voltages applied to nearby metallic surfaces.

Once positively charged, each atom repels each other via the so-called "Coulomb force." The repulsion effectively keeps the atoms apart, so that they form a crystal or lattice-like surface.

The team then used the same forces that are used to trap the atoms to push and pull the ion crystal across the lattice, as well as to stretch and squeeze the ion crystal, much like an accordion, altering the spacing between its atoms.

An earthquake and a caterpillar
In general, the researchers found that when atoms in the ion crystal were regularly spaced, at intervals that matched the spacing of the optical lattice, the two surfaces experienced maximum friction, much like two complementary Lego bricks.

The team observed that when atoms are spaced so that each occupies a trough in the optical lattice, when the ion crystal as a whole is dragged across the optical lattice, the atoms first tend to stick in the lattice's troughs, bound there by their preference for the lower electric potential, as well as by the Coulomb forces that keep the atoms apart. If enough force is applied, the ion crystal suddenly slips, as the atoms collectively jump to the next trough.

"It's like an earthquake," Vuletic says. "There's force building up, and then there's suddenly a catastrophic release of energy."

The group continued to stretch and squeeze the ion crystal to manipulate the arrangement of atoms, and discovered that if the atom spacing is mismatched from that of the optical lattice, friction between the two surfaces vanishes. In this case, the crystal tends not to stick then suddenly slip, but to move fluidly across the optical lattice, much like a caterpillar inching across the ground.

For instance, in arrangements where some atoms are in troughs while others are at peaks, and still others are somewhere in between, as the ion crystal is pulled across the optical lattice, one atom may slide down a peak a bit, releasing a bit of stress, and making it easier for a second atom to climb out of a trough - which in turn pulls a third atom along, and so on.

"What we can do is adjust at will the distance between the atoms to either be matched to the optical lattice for maximum friction, or mismatched for no friction," Vuletic says.

Gangloff adds that the group's technique may be useful not only for realizing nanomachines, but also for controlling proteins, molecules, and other biological components.

"In the biological domain, there are various molecules and atoms in contact with one another, sliding along like biomolecular motors, as a result of friction or lack of friction," Gangloff says. "So this intuition for how to arrange atoms so as to minimize or maximize friction could be applied."

Vuletic, along with graduate students Alexei Bylinskii and Dorian Gangloff, publish their results in the journal Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Donuts, math, and superdense teleportation of quantum information
Chicago IL (SPX) Jun 09, 2015
Putting a hole in the center of the donut--a mid-nineteenth-century invention--allows the deep-fried pastry to cook evenly, inside and out. As it turns out, the hole in the center of the donut also holds answers for a type of more efficient and reliable quantum information teleportation, a critical goal for quantum information science. Quantum teleportation is a method of communicating inf ... read more


TIME AND SPACE
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

TIME AND SPACE
Martian glass: Window into possible past life?

Red Planet Rising

Japanese space agency plans to get samples from Martian moon

Supersonic NASA parachute torn to pieces in latest test

TIME AND SPACE
How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

NASA's LDSD Project Completes Second Experimental Test Flight

TIME AND SPACE
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

TIME AND SPACE
'Hard landing' as three astronauts return to Earth from ISS

Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

TIME AND SPACE
Garvey Spacecraft selects Pacific Spaceport Complex

MSG-4 and S1 C4 make initial contact with Ariane 5 launcher hardware

SpaceX achieves pad abort milestone approval for Commercial Crew

Airbus developing reusable space rocket launcher

TIME AND SPACE
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

TIME AND SPACE
Oculus virtual reality headsets set to ship in 2016

New composite material as CO2 sensor

Magnetic nanoparticles could offer alternative to rare Earth magnets

First US deep space weather satellite reaches final orbit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.