![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Beijing, China (SPX) Apr 22, 2022
Albedo is a term that represents the ability of Earth's surface to reflect solar radiation. This is the primary factor of the energy balance between the surface and the atmosphere. When snow falls, albedo changes quickly, as snow is able to reflect most wavelengths of light back into the atmosphere. Naturally, albedo fluctuates often during winter and spring in the Tibetan Plateau, which has a great impact on the surface energy balance and water cycle. However, modern weather and climate models that focus on land surfaces have struggled to parametrize albedo, or represent albedo effects as a computer algorithm. Locations that have frequent snow cover fluctuations, like the Tibetan Plateau, often have larger model simulation error than regions that do not experience snowfall and rapid melting. Satellites continue to provide new data and derived products that provide a better picture of Earth's radiation budget. With recent improvements to satellite-retrieved albedo data, corresponding author Prof. Yaoming Ma and a group of researchers from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences used satellite spectral albedo data as well as ground observed and simulated snow depth data to develop a scheme that optimizes albedo parameters at the local level using the Noah land surface model. They just published their findings in Advances in Atmospheric Sciences . The research team found that their improved albedo scheme significantly reduces model albedo overestimation throughout the Tibetan Plateau. Likewise, the new scheme closes the gap between the model-simulated and satellite-retrieved albedo data. Furthermore, the Noah model's cold air temperature bias has become less prominent, and the model also more accurately reproduces the spatial distribution characteristics of heavy snowfall. This study breaks through the limitations of the Noah model's default albedo scheme and provides a reference for improving its physical meteorological parameterization schemes by using remote sensing products, such as satellite data. Regarding future applications, Prof. Ma remarked, "Whether this scheme is universal in improving the performance of snowfall and snowmelt estimates on the Tibetan plateau, as well as its future applications, still needs further research." Prof. Massimo Menenti with the Aerospace Information Research Institute of Chinese Academy of Sciences, also a coauthor of the study, added, "The scheme combines the best of two worlds. On the one hand the capability of the model to compute, albeit with moderate accuracy, daily snow depth, which is a driver of snow albedo, and daily snow cover, which can be used to determine snow age, another driver of snow albedo. On the other hand, satellite observations provide accurate measurements of snow albedo, so that the parameterization we propose can provide accurate estimates, even though the model estimates of snow albedo and age might not be very accurate." The above research was supported by the Strategic Priority Research Program of Chinese Academy of Sciences, the Second Tibetan Plateau Scientific Expedition and Research program, and the National Natural Science Foundation of China. Dr. Lian Liu is the first author and Prof. Ma is the corresponding author.
Research Report:Improved Parameterization of Snow Albedo in WRF + Noah: Methodology Based on a Severe Snow Event on the Tibetan Plateau
![]() ![]() Abrupt climate change during last ice age driven by critical CO2 levels Copenhagen, Denmark (SPX) Apr 08, 2022 Large jumps within the last ice age between cold and warm climate periods in the Northern Hemisphere may have occurred because the climate system became unstable when atmospheric CO2 levels were between approximately 190 and 225 parts per million. That is the conclusion from a study, published in Nature Geoscience by Guido Vettoretti et al. at the Niels Bohr Institute (NBI), University of Copenhagen, Denmark. The result is in agreement with data of past temperature and CO2 concentration in ice cor ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |