. 24/7 Space News .
ICE WORLD
Unusual glacier flow could be first-ever look at ice stream formation
by Sara Edwards for AGU News
Washington DC (SPX) Dec 18, 2019

Landsat 8 false-color composite of Vavilov Ice Cap on June 24, 2018. Authors of a new study suspect the images show the first observation of a transition from a glacial surge to a longer-lasting flow called an ice stream. Video presentation here.

Scientists have captured the birth of a high-speed ice feature for the first time on top of a Russian glacier.

In a remote archipelago of the Russian Arctic, Vavilov Ice Cap had been moving at a glacial pace for decades. Then, in 2013, it suddenly started spewing ice into the sea, flowing in what scientists call a glacial surge. But a new study suggests this surge has now become something entirely different.

The authors of the new study published in the AGU journal Geophysical Research Letters have documented what they believe is the first observation of a transition from a glacial surge to a longer-lasting flow called an ice stream. Watch a video of the ice stream flow here.

Ice streams and glacial surges were believed to be separate phenomena driven by different mechanisms. But if the authors of the new study are correct, glacial surges could instead be an early stage of an ice stream. If surging ice can form an ice stream on a glacier like Vavilov, then other ice caps might also experience similar rapid ice loss, said Whyjay Zheng, a Ph.D. candidate at Cornell University and the lead author of the new study.

"If that's true, we probably have to revise our predictions for the impact of global sea level rise in the future," he said.

From the time the surge at Vavilov began in 2013 until the spring of 2019, the ice cap lost 9.5 billion tons of ice, or 11 percent of the ice mass of the entire glacier basin.

Ice streams have been documented before in Greenland and Antarctica, where the ice sheets tend to be larger and their flow less constrained by bedrock features. To see an ice stream in a smaller ice cap like Vavilov would be unusual and perhaps unprecedented, according to the study's authors. And as far as the researchers know, no one has observed one being formed.

"If you look at the satellite images, it seems like the entire west wing of the ice cap is just dumping into the sea," Zheng said. "No one has ever seen this before."

A glacier in transition
Zheng and other researchers at Cornell had been monitoring satellite images of this area since 2015, documenting the elevation change of the ice in a separate study. After the initial glacial surge, Zheng said, they decided to keep an eye on how the ice cap changed over time.

When the researchers analyzed the satellite images to see how the surge had progressed, they found that Vavilov was still collapsing. But by 2017, the way it was collapsing had changed.

From 2013 to 2016, Vavilov Ice Cap flowed in what appeared to be a typical glacial surge. Ice at the glacier's edge where it met the Arctic Sea bulged outward in a wide fan shape, surging forward for about 10 kilometers at a maximum speed of 26 meters per day.

Then, in 2017, the ice fan stopped advancing. Instead, dark stripes appeared on the satellite images, indicating crevasses that had formed at the edges of the still fast-flowing ice.

Glacial surges transport massive amounts of ice in a short amount of time, typically a few months to several years. On the other hand, ice streams can maintain a constant, rapid flow for decades to centuries.

An ice stream is characterized by its long-lasting flow, but also by features called shear margins that form at the edges of the flowing ice. When the study's authors saw these dark stripes, Zheng said, "We thought, wow, this is totally similar to an ice stream."

This was the first clue that what the researchers were seeing was an ice stream forming from the initial glacial surge. To find further evidence, the study's authors used the satellite data to calculate the elevation change and speed of the glacier over time.

The authors found that after the 2017 transition period, the shape of the glacier's flow resembled an ice stream, indicated by its gentle slope and narrow width. The location of the fastest-flowing ice also changed after 2017, with the maximum speed shifting from the upper part of the glacier (typical of a surge) to the end point, or terminus, of the glacier (typical of a stream).

A matter of time
Not much is known about the formation and behavior of ice streams. Because of their remote locations, long-term observations of ice streams are scarce, according to the authors of the new study. While we know that ice streams tend to last for a long time-decades to hundreds of years-no one knows the average lifespan of these glacier features.

Denis Felikson, a cryospheric scientist at NASA Goddard Space Flight Center who was not involved in the research, said it will be interesting to watch Vavilov for the next several years to see whether the ice flow lasts long enough to classify as an ice stream. But, he said, he believes the new study shows strong evidence for a transition from a glacial surge to an ice stream.

"It's really exciting that they found this and are documenting it, because we have very limited understanding of how these glacier behaviors work," Felikson said. "There are some theories on how ice streams form, but to actually observe the possibility of that happening is unique and exciting."

Research Report: "The Possible Transition from Glacial Surge to Ice Stream on Vavilov Ice Cap"


Related Links
Cornell University
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
CryoSat maps ice shelf on the move
Paris (ESA) Dec 16, 2019
It is now almost 10 years since ESA's CryoSat was launched. Throughout its decade in orbit, this novel satellite, which carries a radar altimeter to measure changes in the height of the world's ice, has returned a wealth of information about how ice sheets, sea ice and glaciers are responding to climate change. One of the most recent findings from this extraordinary mission shows how it can be used to map changes in the seaward edges of Antarctic ice shelves. About three-quarters of the Antarctic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
NASA says Boeing Starliner ready to fly as early as Dec 20

Russian cosmonauts planning two spacewalks at ISS in 2020

Child's play: Coding booms among Chinese children

Novel camera gives scientists "Night Vision" from ISS

ICE WORLD
Scaling up for the next generation of rocket technology Down Under

Jeff Bezos's Blue Origin rocket makes 12th test flight

NASA gears up to test fire new SLS moon rocket in Mississippi

NASA says core stage of next Moon rocket now ready

ICE WORLD
Two rovers to toll on Mars Again in 2020

MAVEN maps winds in upper atmosphere of Mars that mirror the terrain below and gives clues to climate

Mars: we may have solved the mystery of how its landslides form

Newfound aurora in Mars atmosphere the most common

ICE WORLD
China sends six satellites into orbit with single rocket

China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

ICE WORLD
Nilesat-301 satellite to be built by Thales Alenia Space

SpaceChain sends blockchain tech to ISS

SpaceChain sends blockchain tech to ISS for Fintech market

First launch of UK's OneWeb satellites from Baikonur now set for 30 Jan

ICE WORLD
Liquid flow is influenced by a quantum effect in water

New aluminium hydroxide stable at extremely high pressure

New laser technique images quantum world in a trillionth of a second

Storing data in everyday objects

ICE WORLD
Breathable atmospheres may be more common in the universe than we first thought

Short-lived light sources discovered in the sky

Water common yet scarce in exoplanets

Hidden giant planet around tiny white dwarf star

ICE WORLD
The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.