![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Sara Edwards for AGU News Washington DC (SPX) Dec 18, 2019
Scientists have captured the birth of a high-speed ice feature for the first time on top of a Russian glacier. In a remote archipelago of the Russian Arctic, Vavilov Ice Cap had been moving at a glacial pace for decades. Then, in 2013, it suddenly started spewing ice into the sea, flowing in what scientists call a glacial surge. But a new study suggests this surge has now become something entirely different. The authors of the new study published in the AGU journal Geophysical Research Letters have documented what they believe is the first observation of a transition from a glacial surge to a longer-lasting flow called an ice stream. Watch a video of the ice stream flow here. Ice streams and glacial surges were believed to be separate phenomena driven by different mechanisms. But if the authors of the new study are correct, glacial surges could instead be an early stage of an ice stream. If surging ice can form an ice stream on a glacier like Vavilov, then other ice caps might also experience similar rapid ice loss, said Whyjay Zheng, a Ph.D. candidate at Cornell University and the lead author of the new study. "If that's true, we probably have to revise our predictions for the impact of global sea level rise in the future," he said. From the time the surge at Vavilov began in 2013 until the spring of 2019, the ice cap lost 9.5 billion tons of ice, or 11 percent of the ice mass of the entire glacier basin. Ice streams have been documented before in Greenland and Antarctica, where the ice sheets tend to be larger and their flow less constrained by bedrock features. To see an ice stream in a smaller ice cap like Vavilov would be unusual and perhaps unprecedented, according to the study's authors. And as far as the researchers know, no one has observed one being formed. "If you look at the satellite images, it seems like the entire west wing of the ice cap is just dumping into the sea," Zheng said. "No one has ever seen this before."
A glacier in transition When the researchers analyzed the satellite images to see how the surge had progressed, they found that Vavilov was still collapsing. But by 2017, the way it was collapsing had changed. From 2013 to 2016, Vavilov Ice Cap flowed in what appeared to be a typical glacial surge. Ice at the glacier's edge where it met the Arctic Sea bulged outward in a wide fan shape, surging forward for about 10 kilometers at a maximum speed of 26 meters per day. Then, in 2017, the ice fan stopped advancing. Instead, dark stripes appeared on the satellite images, indicating crevasses that had formed at the edges of the still fast-flowing ice. Glacial surges transport massive amounts of ice in a short amount of time, typically a few months to several years. On the other hand, ice streams can maintain a constant, rapid flow for decades to centuries. An ice stream is characterized by its long-lasting flow, but also by features called shear margins that form at the edges of the flowing ice. When the study's authors saw these dark stripes, Zheng said, "We thought, wow, this is totally similar to an ice stream." This was the first clue that what the researchers were seeing was an ice stream forming from the initial glacial surge. To find further evidence, the study's authors used the satellite data to calculate the elevation change and speed of the glacier over time. The authors found that after the 2017 transition period, the shape of the glacier's flow resembled an ice stream, indicated by its gentle slope and narrow width. The location of the fastest-flowing ice also changed after 2017, with the maximum speed shifting from the upper part of the glacier (typical of a surge) to the end point, or terminus, of the glacier (typical of a stream).
A matter of time Denis Felikson, a cryospheric scientist at NASA Goddard Space Flight Center who was not involved in the research, said it will be interesting to watch Vavilov for the next several years to see whether the ice flow lasts long enough to classify as an ice stream. But, he said, he believes the new study shows strong evidence for a transition from a glacial surge to an ice stream. "It's really exciting that they found this and are documenting it, because we have very limited understanding of how these glacier behaviors work," Felikson said. "There are some theories on how ice streams form, but to actually observe the possibility of that happening is unique and exciting."
Research Report: "The Possible Transition from Glacial Surge to Ice Stream on Vavilov Ice Cap"
![]() ![]() CryoSat maps ice shelf on the move Paris (ESA) Dec 16, 2019 It is now almost 10 years since ESA's CryoSat was launched. Throughout its decade in orbit, this novel satellite, which carries a radar altimeter to measure changes in the height of the world's ice, has returned a wealth of information about how ice sheets, sea ice and glaciers are responding to climate change. One of the most recent findings from this extraordinary mission shows how it can be used to map changes in the seaward edges of Antarctic ice shelves. About three-quarters of the Antarctic ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |