. 24/7 Space News .
STELLAR CHEMISTRY
Uncovering exotic molecules of potential astrochemical interest
by Staff Writers
Warszawa, Poland (SPX) Mar 16, 2021

Co-authors dr. Arunlibertsen Lawzer i dr. Thomas Custer of research demonstrate the molecules of the astrochemical interest at the Planetarium of the Copernicus Science Centre. Source: IPC PAS, Grzegorz Krzyzewski.

Looking at the night sky, one's thoughts might be drawn to astrochemistry. What molecules inhabit the vast spaces between the stars? Would we see the same molecules that surround us here on Earth? Or would some of them be more exotic--something rarely observed or even unknown?

Recent research by a multinational team led by Prof. Robert Koos from the Institute of Physical Chemistry of the Polish Academy of Sciences has revealed an unusual molecule obtained and detected for the first time in laboratory conditions and also paved a smooth path to produce and further study another. Now that they can be seen and studied, they may prove worthy of wider astrochemical interest. Let's get a closer look at this scientific development.

Interstellar clouds - where the story begins...
The medium permeating the space between stars is mainly filled with hydrogen, helium, and cosmic dust. However, average distances between atoms or molecules in these interstellar clouds are so vast that entire days may pass before they collide. In the vacuum of space, the passage of time and the impact of radiation are crucial factors for the development of more advanced chemical compounds.

As the physical conditions found in interstellar clouds are drastically different from those on our planet, the detection of some of the chemical compounds found in them requires advanced studies on Earth. As part of this, scientists create molecules which are normally unstable under Earth conditions and then conduct research on their properties. They discover them on Earth first so that we can more easily detect them in space. Sounds interesting, but how does it look in practice?

Phosphorus menagerie
Jupiter and Saturn have been in the spotlight in our own solar system for more than two decades due to the detection of phosphine (PH3), ammonia's analog, in their atmospheres. In 2020, all eyes shifted towards Venus following claims that PH3 had been found in its atmosphere as well. The appearance of phosphine in an astronomical object is momentous because of its tremendous importance for living organisms.

Molecules containing phosphorus are crucial for enzymatic processes which are responsible for the formation of the structural materials of our skeletons, nucleic acids like DNA and RNA, and even energy transport in all living cells.

Although it is the 6th most abundant element in Earth's biomass and the 12th most abundant on the planet overall, it is a billion times less abundant in the interstellar medium. Due to their rarity, detecting P-containing molecules in interstellar clouds continues to intrigue scientists.

We know very little about the behavior and existence of P-containing molecules in extreme interstellar conditions. Only a few have been found and are limited to PN, CP, PO, HCP, CCP, PH3, and NCCP. Of these only PO and PN have been detected in molecular clouds. It is possible that the low abundance of reactants containing phosphorus in such media makes the formation of larger molecules quite rare and difficult to detect. We also need to characterize a wider variety of P-containing chemicals so that our search may be expanded to include a larger selection of appropriate targets. The search for new molecules is challenging since many known and promising P-containing species are unstable under typical laboratory conditions.

The IPC PAS researchers: Dr. Arun-Libertsen Lawzer, Dr. Thomas Custer, and Prof. Robert Koos, working in collaboration with Prof. Jean-Claude Guillemin of the Ecole Nationale Superieure de Chimie de Rennes (France) have recently presented an efficient, UV-light-assisted cryogenic synthesis of the HCCP molecule, opening new possibilities for the spectroscopic investigation of this unusual chemical compound. It was detected using infrared and UV-vis spectroscopy. This characterization should be useful for possible future extraterrestrial detections.

"We use ultraviolet to dehydrogenate phosphorus containing organic molecules to produce exotic phosphorus species. We were able to produce triplet HCCP which is a molecule of astrochemical importance. The trick to detecting it lies in using the environment of a frozen inert gas." - remarks Dr. Lawzer.

The experiments performed as part of the project, and relevant theoretical studies show that the molecule has a linear shape and peculiar chemical bonding. Prof. Koos comments: "You may have heard in your school days that phosphorus was either 3- or 5-valent in its chemical compounds. Well, here it is monovalent, sporting a single bond to carbon. This is pretty unusual indeed."

The researchers also confirmed the existence of CH2=C=PH (phosphaallene), a molecule never observed before. It was formed along the route leading from CH3CP (the precursor species) to HCCP.

Experiments backed by quantum chemical computations, recently reported in Angewandte Chemie, have proven what was once but a theoretical construct. "If you asked a regular chemist, some of the most prominent species of the astrochemical menagerie would likely be ridiculed as mere molecular fragments rather than genuine molecules" - admits Prof. Koos.

The laboratory characterization of exotic compounds like HCCP and CH2=C=PH marks an important step towards their extraterrestrial detection. And such detections would greatly advance our knowledge concerning the astrochemistry of phosphorus. This should inspire even more scientists to look towards the stars above...

Research paper


Related Links
Institute Of Physical Chemistry Of The Polish Academy Of Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Scientists sketch aged star system using over a century of observations
Greenbelt MD (SPX) Mar 15, 2021
Astronomers have painted their best picture yet of an RV Tauri variable, a rare type of stellar binary where two stars - one approaching the end of its life - orbit within a sprawling disk of dust. Their 130-year dataset spans the widest range of light yet collected for one of these systems, from radio to X-rays. "There are only about 300 known RV Tauri variables in the Milky Way galaxy," said Laura Vega, a recent doctoral recipient at Vanderbilt University in Nashville, Tennessee. "We focused our ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
With SpaceX, ISS enters 'Golden Age' But what comes next

Keeping up with Thomas

ISS crew once again uses tea leaves to locate air leak in Russian module Zvezda

Air leak in Russia's ISS Zvezda module still unresolved

STELLAR CHEMISTRY
First use of the ENPULSION MICRO R3 thruster in the GMS-T mission

FAA approves renewal of Orbital Sciences launch operator licenses

Soyuz rocket gets new paint job for first time in over 50 years

Goddard's first liquid-fueled rocket

STELLAR CHEMISTRY
Perseverance captures the sounds of driving on Mars

Is there life on mars today and where

Three bacterial strains discovered on space station may help grow plants on Mars

New study challenges long-held theory of fate of Martian Water

STELLAR CHEMISTRY
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

STELLAR CHEMISTRY
City under pressure to invest into UK space industry

Umbra hits regulatory "jackpot" for its satellite constellation able to see a soda can from space

NASA to Host Virtual Symposium Exploring Rise of Commercial Space

Pioneering UK space technology gets government cash boost

STELLAR CHEMISTRY
ThinKom antenna design offers flexible installation options for special-purpose aircraft

Spacepath Communications to provide solid-state amplifiers for US Market

Airbus pioneers first satellite factory in space

Battery pallet becomes largest object discharged from space station

STELLAR CHEMISTRY
ASU scientists determine origin of strange interstellar object

SwRI researcher theorizes worlds with underground oceans support, conceal life

There might be many planets with water-rich atmospheres

How the habitability of exoplanets is influenced by their rocks

STELLAR CHEMISTRY
Juno reveals dark origins of one of Jupiter's grand light shows

Jupiter's Great Red Spot feeds on smaller storms

SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere

Solar system's most distant planetoid confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.