. 24/7 Space News .
TIME AND SPACE
Ultracold atoms reveal a new type of quantum magnetic behavior
by Jennifer Chu for MIT News
Boston MA (SPX) Dec 17, 2020

MIT and Harvard researchers have studied how elementary units of magnetism, called spins (the black arrows), move around and interact with other spins, in a chain of single atoms (the colored spheres). The background shows a real image of the spins, revealing a high contrast periodic modulation of the blue (spin up) atoms.

A new study illuminates surprising choreography among spinning atoms. In a paper appearing in the journal Nature, researchers from MIT and Harvard University reveal how magnetic forces at the quantum, atomic scale affect how atoms orient their spins.

In experiments with ultracold lithium atoms, the researchers observed different ways in which the spins of the atoms evolve. Like tippy ballerinas pirouetting back to upright positions, the spinning atoms return to an equilibrium orientation in a way that depends on the magnetic forces between individual atoms. For example, the atoms can spin into equilibrium in an extremely fast, "ballistic" fashion or in a slower, more diffuse pattern.

The researchers found that these behaviors, which had not been observed until now, could be described mathematically by the Heisenberg model, a set of equations commonly used to predict magnetic behavior. Their results address the fundamental nature of magnetism, revealing a diversity of behavior in one of the simplest magnetic materials.

This improved understanding of magnetism may help engineers design "spintronic" devices, which transmit, process, and store information using the spin of quantum particles rather than the flow of electrons.

"Studying one of the simplest magnetic materials, we have advanced the understanding of magnetism," says Wolfgang Ketterle, the John D. Arthur professor of physics at MIT and the leader of the MIT team. "When you find new phenomena in one of the simplest models in physics for magnetism, then you have a chance to fully describe and understand it. This is what gets me out of bed in the morning, and gets me excited."

Ketterle's co-authors are MIT graduate student and lead author Paul Niklas Jepsen, along with Jesse-Amato Grill, Ivana Dimitrova, both MIT postdocs, Wen Wei Ho, a postdoc at Harvard University and Stanford University, and Eugene Demler, a professor of physics at Harvard. All are researchers in the MIT-Harvard Center for Ultracold Atoms. The MIT team is affiliated with the Institute's Department of Physics and Research Laboratory of Electronics.

Strings of spins
Quantum spin is considered the microscopic unit of magnetism. At the quantum scale, atoms can spin clockwise or counterclockwise, which gives them an orientation, like a compass needle. In magnetic materials, the spin of many atoms can show a variety of phenomena, including equilibrium states, where atom spins are aligned, and dynamic behavior, where the spins across many atoms resemble a wave-like pattern.

It is this latter pattern which was studied by the researchers. The dynamics of the wavelike spin pattern are very sensitive to the magnetic forces between atoms. The wavy pattern faded away much faster for isotropic magnetic forces than for anisotropic forces. (Isotropic forces don't depend on how all the spins are oriented in space).

Ketterle's group aimed to study this phenomenon with an experiment in which they first used established laser-cooling techniques to bring lithium atoms down to about 50 nanokelvin - more than 10 million times colder than interstellar space.

At such ultracold temperatures, atoms are frozen to a near standstill, so that researchers can see in detail any magnetic effects that would otherwise be masked by the thermal motion of the atoms. The researchers then used a system of lasers to trap and arrange multiple strings with 40 atoms each, like beads on a string. In all, they generated a lattice of about 1,000 strings, comprising about 40,000 atoms.

"You can think of the lasers as tweezers that grab the atoms, and if they are warmer they would escape," Jepsen explains.

They then applied a pattern of radio waves and a pulsed magnetic force to the entire lattice, which induced each atom along the string to tilt its spin into a helical (or wavelike) pattern. The wave-like patterns of these strings together corresponds to a periodic density modulation of the "spin up" atoms that forms a pattern of stripes, which the researchers could image on a detector. They then watched how the stripe patterns disappeared as the individual spins of the atoms approached their equilibrium state.

Ketterle compares the experiment to plucking the string of a guitar. If the researchers were to look at the spins of atoms at equilibrium, this wouldn't tell them much about the magnetic forces between the atoms, just as a guitar string at rest wouldn't reveal much about its physical properties. By plucking the string, bringing it out of equilibrium, and seeing how it vibrates and eventually returns to its original state, one can learn something fundamental about the string's physical properties.

"What we're doing here is, we're kind of plucking the string of spins. We're putting in this helix pattern, and then observing how this pattern behaves as a function of time," Ketterle says. "This allows us to see the effect of different magnetic forces between the spins."

Ballistics and ink
In their experiment, the researchers altered the strength of the pulsed magnetic force they applied, to vary the width of the stripes in the atomic spin patterns. They measured how quickly, and in what ways, the patterns faded. Depending on the nature of magnetic forces between atoms, they observed strikingly different behavior in how quantum spins returned to equilibrium.

They discovered a transition between ballistic behavior, where the spins shot quickly back into an equilibrium state, and diffusive behavior, where the spins propagate more erratically, and the overall stripe pattern spread slowly back to equilibrium, like an ink drop slowly dissolving in water.

Some of this behavior has been theoretically predicted, but never observed in detail until now. Some other results were completely unexpected. What's more, the researchers found their observations fit mathematically with what they calculated with the Heisenberg model for their experimental parameters. They teamed up with theorists at Harvard, who performed state-of-the art calculations of the spin dynamics.

"It was interesting to see that there were properties which were easy to measure, but difficult to calculate, and other properties could be calculated, but not measured," Ho says.

In addition to advancing the understanding of magnetism at a fundamental level, the team's results may be used to explore the properties of new materials, as a sort of quantum simulator. Such a platform could work like a special-purpose quantum computer that calculates the behavior of materials, in a way that exceeds the capabilities of today's most powerful computers .

"With all of the current excitement about the promise of quantum information science to solve practical problems in the future, it is great to see work like this actually coming to fruition today," says John Gillaspy, program officer in the Division of Physics at the National Science Foundation, a funder of the research.

The research was also supported by the Department of Defense and the Gordon and Betty Moore Foundation.


Related Links
MIT-Harvard Center for Ultracold Atoms
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Breakthrough in nuclear physics
Munich, Germany (SPX) Dec 10, 2020
The positively charged protons in atomic nuclei should actually repel each other, and yet even heavy nuclei with many protons and neutrons stick together. The so-called strong interaction is responsible for this. Prof. Laura Fabbietti and her research group at the Technical University of Munich (TUM) have now developed a method to precisely measure the strong interaction utilizing particle collisions in the ALICE experiment at CERN in Geneva. The strong interaction is one of the four fundamental f ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
China to launch core module of space station in first half of 2021

Marsquakes, water on other planets, asteroid hunting highlight 2020 in space

US may buy seat on Russia's Soyuz for astronaut's flight to ISS in Spring 2021,

NASA awards contract for Cold Stowage II

TIME AND SPACE
Loss of Vega flight VV17 report issued

Long March 8 rocket makes maiden flight

NASA awards contract for Global Hawk Skyrange program

FAA begins scoping period for environmental review at SpaceX launch site

TIME AND SPACE
A Martian Roundtrip: NASA's Perseverance Rover Sample Tubes

NASA video shows Perseverance rover's planned 'terror' landing on Mars

Fluvial Mapping of Mars

How to get people from Earth to Mars and safely back again

TIME AND SPACE
China plans to launch four manned spacecraft in next two years

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

Mission accomplished, now on to the next: China Daily editorial

China prepares to launch Long March-8 Y1 rocket

TIME AND SPACE
Voyager Space Holdings to buy all of Nanoracks

Hughes selected by OneWeb for Ground system development and production under new $250 million contract

Lockheed Martin To Acquire Aerojet Rocketdyne

Russia lifts UK telecom satellites into orbit

TIME AND SPACE
New radiation vest technology protects astronauts, doctors

Space bauble

NTU Singapore scientists invent glue activated by magnetic field

Astroscale Ships ELSA-d Spacecraft to Launch Site

TIME AND SPACE
Astronomers detect possible radio emission from exoplanet

Key building block for organic molecules discovered in meteorites

Device mimics life's first steps in outer space

Scientists discover compounds that could have helped to start life on Earth

TIME AND SPACE
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.