. 24/7 Space News .
TECH SPACE
UV narrow-band photodetector based on indium oxide nanocrystals
by Staff Writers
Nizhny Novgorod, Russia (SPX) Jul 19, 2018

Schematic representation of the technological process for fabricating a photodetector based on an Al2O3 film with ion beam synthesized In2O3 nanocrystals (a-c), electron microscopic image of an In2O3 nanocrystal (d), and the spectral dependence of the photodetector parameters.

An international team of researchers from Russia and India has created a narrow-band UV photodetector based on indium oxide nanocrystals embedded in a thin film of aluminum oxide

Semiconductor quantum dots (nanocrystals just a few nanometers in size) have attracted researchers' attention due to the size dependent effects that determine their novel electrical and optical properties. By changing the size of such objects, it is possible to adjust the wavelength of the emission they absorb, thus implementing selective photodetectors, including those for UV radiation.

Narrow-band UV photodetectors find application in many areas, in particular in biomedicine where they are used for fluorescence detection or UV phototherapy. The materials commonly used in the manufacture of such photoreceivers are wide-bandgap oxides and nitrides, which offer a greater range of operating temperatures and transparency for visible and solar light in addition to a smaller size of the device.

Indium oxide (In2O3) is a transparent wide-bandgap semiconductor oxide with a direct band gap of about 3.6 eV and an indirect band gap of ~ 2.5 eV. It is well known that highly sensitive UV photodetectors can be created based on In2O3.

According to Alexey Mikhaylov, head of the laboratory at the UNN Research Institute of Physics and Technology, researchers together with their Indian colleagues from Indian Institute of Technology Jodhpur and Indian Institute of Technology Ropar managed to synthesize In2O3 nanocrystals in an aluminum oxide (Al2O3) film on silicon by implanting indium ions.

Ion implantation is a basic method in modern electronic technology, which makes it possible to control the size of inclusions thus allowing the optical properties of the photodetector to be tuned. The Al2O3 matrix used for indium oxide nanocrystals offers some advantages over other dielectrics in that this wide-bandgap material (8.9 eV) is transparent for a wide range of wavelengths.

"In the process of our work, we managed to achieve a significant reduction in the dark current (more than two times as compared to a similar photodetector based on In2O3 nanowires). By integrating the In2O3 phase into the wide-band matrix and due to its low dark current, the new photodetector shows record values of the responsivity and external quantum efficiency," Alexey Mikhaylov notes.

The sensitivity band in the UV range has a width of only 60 nm and shows a high UV-visible rejection ratio (up to 8400). This photodetector is highly suitable for practical applications such as narrow-band spectrum-selective photodetectors. The device design based on ion-synthesized nanocrystals could provide a new approach for realizing a visible-blind photodetector.

Research paper


Related Links
Lobachevsky University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
New insights bolster Einstein's idea about how heat moves through solids
Oak Ridge TN (SPX) Jul 04, 2018
A discovery by scientists at the Department of Energy's Oak Ridge National Laboratory supports a century-old theory by Albert Einstein that explains how heat moves through everything from travel mugs to engine parts. The transfer of heat is fundamental to all materials. This new research, published in the journal Science, explored thermal insulators, which are materials that block transmission of heat. "We saw evidence for what Einstein first proposed in 1911 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA and Peanuts Worldwide to Collaborate on Deep Space Learning Activities

Russian cargo ship docks at ISS in record time

Google parent 'graduates' moonshot projects Loon, Wing

Testing Refines Requirements for Deep Space Habitat Design

TECH SPACE
Largest-ever solid rocket motor poised for first hot firing

Experimental Spaceplane Program Successfully Completes Engine Test Series

Aerojet Rocketdyne demonstrates 24-Hour turnaround of AR-22 Engine

Chinese Space Company Planning Launch of Largest Privately Owned Liquid Rocket

TECH SPACE
Scientists Discover "Ghost Dunes" On Mars

Airbus wins two ESA studies for Mars Sample Return mission

NASA listens out for Opportunity everyday

UK space sector set to benefit from new European Space Agency contract

TECH SPACE
China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

China launches new-tech experiment twin satellites

TECH SPACE
mu Space confirms payload on Blue Origin's upcoming New Shepard flight

China Mulls Creation of Joint Global Satellite System with Russia

EIB and ESA to cooperate on increasing investments in the European Space Sector

Laser-Based System is Set to Expand Space-to-Ground Communication

TECH SPACE
Chinese scientists achieve success in nitrogen metallization

A high-yield perovskite catalyst for the oxidation of sulfides

Photonic capsules for injectable laser resonators

Paper-cut provides model for 3D intelligent nanofabrication

TECH SPACE
TESS Spacecraft Continues Testing Prior to First Observations

NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

Rocky planet neighbor looks familiar, but is not Earth's twin

NASA's Kepler Spacecraft Pauses Science Observations to Download Science Data

TECH SPACE
First Global Maps of Pluto and Charon from New Horizons Published

Europa's Ocean Ascending

Jupiter's moons create uniquely patterned aurora on the gas giant planet

'Cataclysmic' collision shaped Uranus' evolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.