. 24/7 Space News .
NANO TECH
UT Dallas team's microscopic solution may save researchers big time
by Staff Writers
Dallas TX (SPX) Mar 01, 2018

illustration only

A University of Texas at Dallas graduate student, his advisor and industry collaborators believe they have addressed a long-standing problem troubling scientists and engineers for more than 35 years: How to prevent the tip of a scanning tunneling microscope from crashing into the surface of a material during imaging or lithography.

Details of the group's solution appeared in the January issue of the journal Review of Scientific Instruments, which is published by the American Institute of Physics.

Scanning tunneling microscopes (STMs) operate in an ultra-high vacuum, bringing a fine-tipped probe with a single atom at its apex very close to the surface of a sample. When voltage is applied to the surface, electrons can jump or tunnel across the gap between the tip and sample.

"Think of it as a needle that is very sharp, atomically sharp," said Farid Tajaddodianfar, a mechanical engineering graduate student in the Erik Jonsson School of Engineering and Computer Science. "The microscope is like a robotic arm, able to reach atoms on the sample surface and manipulate them."

The problem is, sometimes the tungsten tip crashes into the sample. If it physically touches the sample surface, it may inadvertently rearrange the atoms or create a "crater," which could damage the sample. Such a "tip crash" often forces operators to replace the tip many times, forfeiting valuable time.

Dr. John Randall is an adjunct professor at UT Dallas and president of Zyvex Labs, a Richardson, Texas-based nanotechnology company specializing in developing tools and products that fabricate structures atom by atom. Zyvex reached out to Dr. Reza Moheimani, a professor of mechanical engineering, to help address STMs' tip crash problem. Moheimani's endowed chair was a gift from Zyvex founder James Von Ehr MS'81, who was honored as a distinguished UTD alumnus in 2004.

"What they're trying to do is help bring atomically precise manufacturing into reality," said Randall, who co-authored the article with Tajaddodianfar, Moheimani and Zyvex Labs' James Owen. "This is considered the future of nanotechnology, and it is extremely important work." Randall said such precise manufacturing will lead to a host of innovations.

"By building structures atom by atom, you're able to create new, extraordinary materials," said Randall, who is co-chair of the Jonsson School's Industry Engagement Committee. "We can remove impurities and make materials stronger and more heat resistant. We can build quantum computers. It could radically lower costs and expand capabilities in medicine and other areas. For example, if we can better understand DNA at an atomic and molecular level, that will help us fine-tune and tailor health care according to patients' needs. The possibilities are endless."

In addition, Moheimani, a control engineer and expert in nanotechnology, said scientists are attempting to build transistors and quantum computers from a single atom using this technology.

"There's an international race to build machines, devices and 3-D equipment from the atom up," said Moheimani, the James Von Ehr Distinguished Chair in Science and Technology.

'It's a Big, Big Problem'
Randall said Zyvex Labs has spent a lot of time and money trying to understand what happens to the tips when they crash.

"It's a big, big problem," Randall said. "If you can't protect the tip, you're not going to build anything. You're wasting your time."

Tajaddodianfar and Moheimani said the issue is the controller.

"There's a feedback controller in the STM that measures the current and moves the needle up and down," Moheimani said. "You're moving from one atom to another, across an uneven surface. It is not flat. Because of that, the distance between the sample and tip changes, as does the current between them. While the controller tries to move the tip up and down to maintain the current, it does not always respond well, nor does it regulate the tip correctly. The resulting movement of the tip is often unstable."

It's the feedback controller that fails to protect the tip from crashing into the surface, Tajaddodianfar said.

"When the electronic properties are variable across the sample surface, the tip is more prone to crash under conventional control systems," he said. "It's meant to be really, really sharp. But when the tip crashes into the sample, it breaks, curls backward and flattens.

"Once the tip crashes into the surface, forget it. Everything changes."

The Solution
According to Randall, Tajaddodianfar took logical steps for creating the solution.

"The brilliance of Tajaddodianfar is that he looked at the problem and understood the physics of the tunneling between the tip and the surface, that there is a small electronic barrier that controls the rate of tunneling," Randall said. "He figured out a way of measuring that local barrier height and adjusting the gain on the control system that demonstrably keeps the tip out of trouble. Without it, the tip just bumps along, crashing into the surface. Now, it adjusts to the control parameters on the fly."

Moheimani said the group hopes to change their trajectory when it comes to building new devices.

"That's the next thing for us. We set out to find the source of this problem, and we did that. And, we've come up with a solution. It's like everything else in science: Time will tell how impactful our work will be," Moheimani said. "But I think we have solved the big problem."

Randall said Tajaddodianfar's algorithm has been integrated with its system's software but is not yet available to customers. The research was made possible by funding from the Army Research Office and the Defense Advanced Research Projects Agency.

Research paper


Related Links
University of Texas at Dallas
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


NANO TECH
Researchers invent light-emitting nanoantennas
Saint Petersburg, Russia (SPX) Feb 27, 2018
Nanoscale light sources and nanoantennas already found a wide range of applications in several areas, such as ultra compact pixels, optical detection or telecommunications. However, the fabrication of nanostructure-based devices is rather complicated since the materials typically used have a limited luminescence efficiency. What is more, single quantum dots or molecules usually emit light non-directionally and weakly. An even more challenging task is placing a nanoscale light source precisely near a nan ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
ISS Expedition 54 crew land safely in Kazakhstan

Florida Poly developing Happy Suit for Astronauts

Shiseido researches stress in closed-off environments to simulate ISS conditions

Cosmonaut, two US astronauts return to Earth from ISS

NANO TECH
Russia's Energomash tests RD-180 engine made for US Atlas rocket

Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

SLS Intertank loaded for shipment, structural testing

Space-X lobs Spanish military satellite into orbit

NANO TECH
Life in world's driest desert seen as sign of potential life on Mars

Mars Odyssey Observes Martian Moons

Atacama Desert study offers glimpse of what life on Mars could look like

Dormant desert life hints at possibilities on Mars

NANO TECH
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

NANO TECH
Iridium Certus readies for takeoff with aviation service providers

Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

NANO TECH
Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'

NANO TECH
Alien life in our Solar System? Study hints at Saturn's moon

Model based on hydrothermal sources evaluate possibility of life Jupiter's icy moon

When do aging brown dwarfs sweep the clouds away?

Proxima Centauri's no good, very bad day

NANO TECH
Chasing a stellar flash with assistance from GAIA

The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.