. 24/7 Space News .
UH researchers report new class of polyethylene catalyst
by Staff Writers
Houston TX (SPX) Jan 28, 2019

file illustration only

A team of chemists from the University of Houston has reported the discovery of a new class of catalyst to produce ultra-high-weight polyethylene, a potential new source of high-strength, abrasion-resistant plastic used for products ranging from bulletproof vests to artificial joints.

The nickel-based catalyst is described in a paper published Friday, Jan. 25, in Nature Communications.

"This is a completely new class of catalysts that can produce ultra-high-weight polyethylene," said co-author Olafs Daugulis, Robert A. Welch Chair of Chemistry at UH. "We have demonstrated that this class of nickel catalysts works."

Other researchers involved in the work include first author Andrew L. Kocen, a doctoral student, and chemistry professor Maurice Brookhart. All are affiliated with the Welch Center for Excellence in Polymer Chemistry at UH.

Polyethylene is among the most popular plastics in the world, derived from natural gas and crude oil and used for plastic bags, shampoo bottles, children's toys and other consumer goods. Brookhart noted that all commercial polyethylene is currently produced by so-called "early metal catalysts," mainly titanium and zirconium. Nickel, one of a group of metals known as "late transition metals," is abundant and inexpensive, thus making catalysts based on nickel attractive from a commercial point of view.

Brookhart's research group reported the first nickel-based catalysts for use in the synthesis of polyolefins, including polyethylene, in the mid-1990s. Those early catalysts had two nitrogen-based molecules, or ligands, bound to the nickel. The new catalyst instead relies on a single phosphine ligand.

The researchers reported the new catalyst is highly active, reaching 3.8 million turnovers per hour, but is relatively short-lived, with polymerization slowing dramatically within about four minutes.

"We report here that the tri-1-adamantylphosphine-nickel complex [Ad3PNiBr3]-[Ad3PH]+, when exposed to alkyl aluminum activators, polymerizes ethylene to ultra-high-molecular-weight polyethylene (Mn up to 1.68x106g mol-1) with initial activities reaching a remarkable 3.8 million turnovers per hour at 10 C," they wrote.

More work will be needed to produce a commercially viable catalyst, but Daugulis said the proof of concept offers a valuable starting point. "All practical inventions are based on fundamental research," he said. "That's where things start."

Brookhart said balancing catalytic activity, known as turnover frequency, with longevity will be key to any potential commercialization.

"To be commercial, a catalyst needs ideally high turnover frequency and long lifetimes," he said. "The current catalyst has exceptional initial turnover frequency, but the lifetime is short. To be interesting commercially, the catalyst lifetime needs to be improved."

Related Links
University of Houston
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

What atoms do when liquids and gases meet
Madrid, Spain (SPX) Jan 25, 2019
Although this is correct on larger scales, the assumption fails on smaller scales, according to various experiments and computer simulations carried out in recent decades. In an article recently published in Nature Physics, a group of mathematicians from Universidad Carlos III de Madrid (UC3M) and Imperial College London have come up with a new approach that solves this problem. When materials are in a solid state, their atoms are arranged in very uniform patterns, like grids, sheets and lattices. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Duration of UAE Astronaut's Mission on Board ISS Reduced to 8 Days

NASA Announces Updated Crew Assignment for Boeing Flight Test

China is growing crops on the far side of the moon

Beans to be next vegetable on astronauts' menu by 2021

Japan launches Epsilon-4 Rocket with 7 satellites

United Launch Alliance Successfully Launches NROL-71 in Support of National Security

Air Force and its mission partners successfully launch NROL71

Russia ready to design new super heavy rocket says Rogozin

Dust storm activity appears to pick up south of Opportunity

ExoMars software passes ESA Mars Yard driving test

Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

mu Space unveils plan to bid for space exploration projects

Airbus wins DARPA contract to develop smallsat bus for Blackjack program

A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

How much do European citizens know about space?

'The new oil': Dublin strikes it rich as Europe's data hub

Materials that open in the heat of the moment

What atoms do when liquids and gases meet

New technology uses lasers to transmit audible messages to specific people

Double star system flips planet-forming disk into pole position

The Truth is Out There: New Online SETI Tool Tracks Alien Searches

First comprehensive, interactive tool to track SETI searches

Potential for life on planet around Barnard's Star

Juno's Latest Flyby of Jupiter Captures Two Massive Storms

Outer Solar System Orbits Not Likely Caused by "Planet Nine"

Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.