. 24/7 Space News .
TECH SPACE
A method to create upward water fountain in 'deep water'
by Staff Writers
Houston TX (SPX) Jan 20, 2022

A laser-induced fountain, in yellow, is created by a laser beam shining on the surface of ferrofluid in the Bao lab.

A pair of University of Houston engineers has discovered that they can create upward fountains in water by shining laser beams on the water's surface. Jiming Bao, professor of electrical and computer engineering at UH, and his postdoctoral student Feng Lin, attribute the finding to a phenomenon known as the Marangoni effect, which causes convection and explains the behavior of water when differences in surface tension exist.

Though first described in the 1860's, the Marangoni effect is still having its way with science.

"Scientifically no one has predicted or imagined this kind of upward deformation before," reports Bao in Materials Today Physics. "It is well known that an outward Marangoni convection from a low surface tension region will make the free surface of a liquid depressed. Here, we report that this established perception is only valid for thin liquid films. Using surface laser heating, we show that in deep liquids a laser beam pulls up the fluid above the free surface generating fountains with different shapes."

Here's a Marangoni visual: Sprinkle a bunch of pepper into a bowl of water. Then squeeze one drop of liquid detergent (dishwashing, laundry, even a chip of soap or toothpaste) into the middle of the same bowl and watch as the pepper disburses, scattering quickly to the sides of the bowl. That simple experiment illustrates the Marangoni effect, which appears in many applications of fluid dynamics.

In the most recent incarnation, the Marangoni effect's laser-induced liquid fountains have potential to impact applications involving liquids or soft matters such as lithography and 3D printing, heat transfer and mass transport, crystal growth and alloy welding, dynamic grating and spatial light modulation and microfluidics and adaptive optics.

Inspired by his previous work, the successful simulation of inward surface depression in a shallow liquid, Bao increased the depth of ferrofluid in the current simulation. Ferrofluid is a so-called "magic" liquid and is best known for its astonishing surface spikes generated by a magnet.

"Understanding the distinct surface deformation in liquids with different depths helps unravel the dynamics of the surface deformation process," said Bao.

Bao used a low-power (<1 W) continuous-wave laser beam to create a non-uniform surface temperature field to induce the Marangoni effect. To understand the distinct deformations between deep and shallow liquids, he varied the liquid layer thickness while keeping the laser beam the same.

The laser fountains and the depth-dependent transition from surface indentation to laser fountain have never been reported in literature, probably because they are not anticipated by any existing theory.

"We emphasize that there have been numerous attempts to understand the Marangoni flow-driven surface deformation, but no existing theory can predict the deformation patterns of a liquid with an arbitrary depth in a straightforward manner," said Bao.


Related Links
University of Houston
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
'Throwaway economy' thwarting climate goals: report
Paris (AFP) Jan 19, 2022
Countries are neglecting the massive impact of the "throwaway" economy on planet-warming emissions, according to research published Wednesday that calculated more than half a trillion tonnes of virgin materials have been consumed since the 2015 Paris climate deal. From clothing to food, planes to buildings, research by the organisation Circle Economy estimates that 70 percent of greenhouse gas emissions are linked to the manufacturing and use of products. But in its annual report on the state o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Crash test dummy

Cosmonauts complete first spacewalk of 2022 to prepare Russian ISS segment

Data-relay system connects astronauts direct to Europe

NASA's newest astronaut class begins training in Houston

TECH SPACE
Rocket Lab readies first 2022 Electron Launch, BlackSky adds another mission to manifest

SpaceX launches 2,000th Starlink satellite from Florida

Gilmour Space fires up for 2022 with Australia's largest rocket engine test

Iran tests solid-fuel satellite carrier rocket

TECH SPACE
Dust storm grounded Mars helicopter, but it's ready to fly again

Grounded: First Flight Delay Due to Inclement Weather on Another World

Sols 3357-3360: Edging Closer and Closer to Panari

Curiosity measures intriguing carbon signature on Mars

TECH SPACE
China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

TECH SPACE
AGIS signs Kleos' data evaluation contract

GalaxySpace to establish space-based network

Liberty Strategic Capital to invest $150 Million in Satellogic and CF Acquisition Corp V

Palomar survey instrument analyzes impact of Starlink satellites

TECH SPACE
Facebook trumpets massive new supercomputer

Rusting iron can be its own worst enemy

A new language for quantum computing

Using ice to boil water

TECH SPACE
Scientists are a step closer to finding planets like Earth

Ironing out the interiors of exoplanets

Evidence for a second supermoon beyond our solar system

Unusual team finds gigantic planet hidden in plain sight

TECH SPACE
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.