. 24/7 Space News .
UC Riverside Scientists Synthesize New Porous Materials

Four different topological types, named UCR-20, UCR-21, UCR-22 and UCR-23, that the new zeolite analog materials possess. Each topological type can be made in a variety of chemical compositions. (A) The 3-dimensional sodalite-based framework in UCR-20. (B) Supertetrahedral clusters are joined into a 6-membered ring in UCR-21 with a cubic ZnS (zinc sulfide) type framework. (C) The 3-dimensional framework of UCR-22 with the cubic ZnS type framework decorated with the core-less supertetrahedral cluster. (D) The 3-dimensional framework of UCR-23 showing channels with the pore size consisting of 16 tetrahedral atoms.

Riverside - Feb 12, 2003
Scientists at the University of California, Riverside have synthesized a large family of semiconducting porous materials that have an unprecedented and diverse chemical composition.

The new materials show several different properties such as photoluminescence, ion exchange, and gas sorption. They also have a large surface area and uniform pore sizes.

In addition, they have a pore size larger than zeolites. The synthetic approach has the potential to generate new materials with even larger pore sizes, the scientists report in Science.

"This research represents a major advance in the development of crystalline porous materials," said Pinyung Feng, assistant professor of chemistry and one of the co-authors of the paper. "Porous materials have widespread commercial applications."

Currently, the most important porous materials are zeolites. Zeolites are currently used as adsorbents for non-cryogenic air separation and as solid acid catalyst to crack down large hydrocarbon molecules to make small hydrocarbon molecules such as gasoline and other petrochemical products.

Porous materials are also called molecular sieves because their unique pore size allows the distinction of molecules based on their size and shape.

"Properties of porous materials are intimately related to their framework topological features and chemical compositions," explained Feng. "Therefore, the development of porous materials with new compositions and topologies can lead to new applications or much improved current applications."

Today's porous materials such as zeolites have various limitations. Their pore size is less than 1nm and, therefore, they have little utility in reactions involving large molecules such as pharmaceutical molecules.

Moreover, because zeolites are made from aluminum, silicon, and oxygen, they are insulators. Therefore, they have little use in applications that utilize electronic, optical, or electrooptical properties.

The new materials reported in Science are a new class of porous materials. Like traditional porous materials, e.g., zeolites, they may find applications in areas such as catalysis and separation. More important, because they combine zeolite-type porosity with semiconductivity, they may have unique applications that are not possible with other materials.

The combination of porosity with semiconductivity in the new materials opens up more applications such as electronic and optoelectronic devices, electrocatalysis, electroanalysis and sensors.

These materials may be used as high surface area electrodes for electrochemical cells to molecular scale composite materials for microelectronics and sensor technologies.

"More research is needed to realize the application potential of these materials," said Feng. "Zeolites have a direct impact in many aspects of people's lives - gasoline production, smog reduction, water softening, cleanup of radioactive wastes, and so on.

The materials we have developed are designed to improve and extend the applications of zeolites and, as such, the potential for direct impact on people's life is significant."

possible applications of the new porous materials include

  • Electrochemical sensors The new materials can be used as electrodes in electrochemical sensors. Because of the uniform pore size, the new materials can selectively adsorb pollutants in air or water such as toxic organic molecules and allow these pollutants to be detected selectively based on their size and shape.
  • Photocatalysts The new materials can absorb visible lights and serve as photocatalysts. Photocatalysts such as anatase have been used in applications such as water and air purification because they promote photochemical reactions that destroy pollutants.
  • Solid electrolytes for batteries Open channels in these new porous materials allow easy ion movement. Therefore, these materials may be used as solid electrolytes in batteries.
  • Adsorbents for gas separation Gas separation is a large-scale industrial processes. For example, the manufacture of oxygen is dependent on the separation of air. Porous materials such as zeolite X have been used for this process for many years. The new porous materials developed by UC Riverside researchers possess some structural features that are superior than zeolite X. Further studies are still necessary to determine their efficiency for gas separation.

Related Links
Department of Chemistry, UC Riverside
College of Natural and Agricultural Sciences, UC Riverside
Science Magazine
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Space Link Extension Transfer Services
Washington - Feb 12, 2003
ESA and NASA are utilizing a pioneering cross-support capability known as the Space Link Extension (SLE) transfer services for the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission.







  • Artemis Finally Reaches Operational Orbit
  • Lord Sainsbury Launches Three-Year Strategy For UK Space
  • Artemis Nearly There
  • Rosetta: A Comet Ride To Solve Planetary Mysteries

  • Using an Earth Wind Tunnel to Test a Parachute Bound for Mars
  • Mars May Be Much Older Or Younger Than Thought
  • Mars and the Final Four
  • Hunt For Life On Mars Dealt Another Blow

  • Europe and Russia Do Soyuz Deal At Last
  • Vandenberg Launch Facility Gets Facelift
  • Flight 159: The Last Ariane 4
  • ILS Investigation Panel Releases Results of Initial Review

  • New Images from Space Spotlight Asian, Australian Pollution
  • Norway Buys $15 Million Worth of RADARSAT-2 Data from MDA
  • Space Imaging Offers Online Shopping Cart At Last
  • Analog Detection Of Concealed Weapons of Mass Destruction

  • Planetary Scientists Applaud President's FY04 Budget Proposal
  • New Moons Found Around Neptune
  • Novel Way To Look For Comets Beyond Neptune
  • First Neptune Trojan Discovered

  • Scientists Catch Their First Elusive "Dark" Gamma-Ray Burst
  • Biggest Zoom Lens In Space Extends Hubble's Reach
  • The Strange And Mysterious Star V838 Mon
  • Gravity-Wave Search Produces Initial Data

  • Moon's Early History May Have Been Interrupted By Big Burp
  • Memories Of Orange Rock From The Lunar Age
  • Taos Goes Lunar With International Talkfest
  • Moon and Earth Formed out of Identical Material

  • Fastrax Upgrades GPS Firmware
  • Boeing Delta II Lifts Air Force Satellites into Action
  • Delta 2 Ready to Launch Pair of GPS Birds
  • Crop Producers Go High-Tech With GPS Technology

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement