. 24/7 Space News .
TIME AND SPACE
Turning entanglement upside down
by Staff Writers
Innsbruck, Austria (SPX) Jun 19, 2018

file illustration only

Quantum entanglement forms the heart of the second quantum revolution: it is a key characteristic used to understand forms of quantum matter, and a key resource for present and future quantum technologies. Physically, entangled particles cannot be described as individual particles with defined states, but only as a single system.

Even when the particles are separated by a large distance, changes in one particle also instantaneously affect the other particle(s). The entanglement of individual particles - whether photons, atoms or molecules - is part of everyday life in the laboratory today.

In many-body physics, following the pioneering work of Li and Haldane, entanglement is typically characterized by the so-called entanglement spectrum: it is able to capture essential features of collective quantum phenomena, such as topological order, and at the same time, it allows to quantify the 'quantumness' of a given state - that is, how challenging it is to simply write it down on a classical computer.

Despite its importance, the experimental methods to measure the entanglement spectrum quickly reach their limits - until today, these spectra have been measured only in few qubits systems. With an increasing number of particles, this effort becomes hopeless as the complexity of current techniques increases exponentially.

"Today it is very hard to perform an experiment beyond few particles that allows us to make concrete statements about entanglement spectra," explains Marcello Dalmonte from the International Centre for Theoretical Physics (ICTP) in Trieste, Italy.

Together with Peter Zoller and Benoit Vermersch from the Department of Theoretical Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences, he has now found a surprisingly simple way to investigate quantum entanglement directly.

The physicists turn the concept of quantum simulation upside down by no longer simulating a certain physical system in the quantum simulator, but directly simulating its entanglement Hamiltonian operator, whose spectrum of excitations immediately relates to the entanglement spectrum.

Demonstrate quantum advantage
"Instead of simulating a specific quantum problem in the laboratory and then trying to measure the entanglement properties, we propose simply turning the tables and directly realizing the corresponding entanglement Hamiltonian, which gives immediate and simple access to entanglement properties, such as the entanglement spectrum" explains Marcello Dalmonte.

"Probing this operator in the lab is conceptually and practically as easy as probing conventional many-body spectra, a well-established lab routine."

Furthermore, there are hardly any limits to this method with regard to the size of the quantum system. This could also allow the investigation of entanglement spectra in many-particle systems, which is notoriously challenging to address with classical computers.

Dalmonte, Vermersch and Zoller describe the radically new method in a current paper in Nature Physics and demonstrate its concrete realization on a number of experimental platforms, such as atomic systems, trapped ions and also solid-state systems based on superconducting quantum bits.

Research Report: Quantum simulation and spectroscopy of entanglement Hamiltonian. Marcello Dalmonte, Benoit Vermersch, Peter Zoller. Nature Physics 2018 DOI: 10.1038/s41567-018-0151-7


Related Links
University of Innsbruck
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Evidence for a new property of quantum matter revealed
Baltimore MD (SPX) Jun 19, 2018
A theorized but never-before detected property of quantum matter has now been spotted in the lab, a team of scientists reports. The team proved that a particular quantum material can demonstrate electrical dipole fluctuations - irregular oscillations of tiny charged poles on the material - even in extremely cold conditions, in the neighborhood of minus 450 degrees Fahrenheit. The material, first synthesized 20 years ago, is called k-(BEDT-TTF)2Hg(SCN)2 Br. It is derived from organic compound ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA astronauts install high-def cameras during spacewalk

ECOSTRESS among science payloads on next ISS mission

Possible launch date of Russia's Nauka module to ISS

Second Space Station mission for Alexander Gerst begins

TIME AND SPACE
Sample Return Technology Successfully Tested on Xodiac Rocket

Japan successfully tests H-IIA launch vehicle with new research satellite

Girls' Rocketry Challenge team wins three awards at national model rocketry competition

US Senate introduces measure to upgrade defense against hypersonic threats

TIME AND SPACE
NASA spacecraft studying massive Martian dust storm

Opportunity rover sends transmission amid Martian dust storm

NASA encounters the perfect storm for science on Mars

Martian dust storm silences NASA's rover, Opportunity

TIME AND SPACE
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

TIME AND SPACE
US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

Lockheed Martin Announces $100 Million Venture Fund Increase

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

TIME AND SPACE
Dutch software makes supercomputer from laptop

Ground-breaking discoveries could create superior alloys with many applications

Scientists predict a new superhard material with unique properties

Modern alchemists are making chemistry greener

TIME AND SPACE
Chandra Scouts Nearest Star System for Possible Hazards

Researchers discover a system with three Earth-sized planets

Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

TIME AND SPACE
NASA shares more Pluto images from New Horizons

Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.