. 24/7 Space News .
Tungsten isotopes in seawater provide insights into the co-evolution of Earth's mantle and continents
by Staff Writers
Vienna, Austria (SPX) May 18, 2022

illustration only

In a study published in the journal Nature Communications, Andrea Mundl-Petermeier and Sebastian Viehmann of the Department of Lithospheric Research at the University of Vienna have demonstrated that a new geochemical archive - 182Tungsten in banded iron formations - can be used to simultaneously trace both the evolution of the Earth's mantle and continents throughout Earth's history. This offers new opportunities to better understand the Precambrian Earth in the future.

In order to investigate how the Earth's mantle developed in the early Earth period, the short-lived 182Hafnium-182Tungsten isotope system has been in the focus before: 182Tungsten indicates, among other things, how much the Earth was exposed to intense meteorite impacts towards the end of its formation and how quickly Earth's mantle mixed and homogenized with these meteoritic components throughout Earth's history.

However, until now, magmatic rocks from different, but very limited relicts of ancient continents - for example, Australia or South Africa - had to be studied for these isotopes. Andrea Mundl-Petermeier and Sebastian Viehmann from the Department of Lithospheric Research at the University of Vienna and colleagues at the University of Cologne and Jacobs University Bremen, now discovered a new geochemical archive published it in the journal Nature Communications: tungsten isotope signatures in banded iron formations (BIFs), which predominantly formed in the Precambrian, i.e., between 3.8 billion and about 540 million years ago.

Evolution of the Earth's mantle and the continents
Using the 2.7 billion-year-old iron formation from the Temagami greenstone belt in Canada, the team was able to reconstruct that iron- and silica-rich layers deposited from seawater can simultaneously record the evolution of the Earth's mantle and crust.

With state-of-the-art instruments from the GeoCosmoChronology group and the new Geoscience Solid State Mass Spectrometry (GeoIsotopes) Core Facility at the Department of Lithospheric Research, the research team obtained high-precision isotope measurements of individual bright quarz and dark iron layers.

"With the help of high-precision measurement methods, we were able to resolve small but distinct differences in 182W of individual layers," says Andrea Mundl-Petermeier from the Department of Lithospheric Research. The new approach now tackles the long-standing questions regarding mantle and crust evolution from a seawater perspective: banded iron ores are formed by chemical deposition from the ocean.

"The BIFs studied from the Temagami area thus directly represent seawater chemistry 2.7 billion years ago," explains geologist Sebastian Viehmann: "We are looking at the Earth at that time from the perspective of the ocean."

Research Report:Earth's geodynamic evolution constrained by 182W in Archean seawater

Related Links
University of Vienna
Tectonic Science and News

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

An underwater frontier
Santa Barbara CA (SPX) May 18, 2022
Occasionally, planet Earth will grab the headlines: Underwater volcanic eruptions send ash into the air, or earthquakes generate massive waves that send people running for safety as the rest of us watch, stunned. Other processes, meanwhile, happen so slowly as to be unnoticeable: oceans widen, mountains grow. All these processes are due to plate tectonics, the glide of solid rock "plates" over viscous mantle softened by primordial heat leftover from planet Earth's formation. How these plates bump ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Boeing's Starliner to launch uncrewed test flight to International Space Station

ISS Partnership faces 'Administrative Difficulties' NASA Panel Says

Wealthy nations carving up space and its riches, leaving others behind

Scientists successfully grow plants in soil from the Moon

Rocket engine exhaust pollution extends high into Earth's atmosphere

Bolsonaro to meet Elon Musk in Brazil: government source

Musk, Bolsonaro talk free speech, deforestation in Brazil

Boeing's Starliner encounters propulsion problems on way to ISS

Could people breathe the air on Mars

Next Stop: Hawksbill Gap

New study indicates limited water circulation late in the history of Mars

Study reveals new way to reconstruct past climate on Mars

China's cargo craft docks with space station combination

China launches the Tianzhou 4 cargo spacecraft

China prepares to launch Tianzhou-4 cargo spacecraft

China launches Jilin-1 commercial satellites

Reached your entrepreneurial limit? Hire a marketer, study suggests

Kepler provides on-orbit high-capacity data service to Spire Global

Plans unveiled to better connect space industries in Scotland and the UAE

Rocket Lab launches BRO-6 for Unseenlabs

Floquet matter and metamaterials: Time to join forces

Researchers unveil a secret of stronger metals

Microsoft moves to avert EU antitrust clash over cloud

Advancing fundamental drilling science

The origin of life: A paradigm shift

Researchers reveal the origin story for carbon-12, a building block for life

Planet-forming disks evolve in surprisingly similar ways

Experiments measure freezing point of extraterrestrial oceans to aid search for life

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.