. 24/7 Space News .
SPACE MEDICINE
Tissue engineering in space could treat age-related muscle loss on Earth
by Staff Writers
Kennedy Space Center FL (SPX) Aug 10, 2021

Video: Northrop Grumman CRS-16 Research Overview: Cardinal Muscle (stock image only)

An investigation headed for the International Space Station (ISS) on Northrop Grumman's upcoming 16th Commercial Resupply Services (CRS) mission could someday enable rapid advancements in treatments for age-related muscle loss.

In an experiment funded by the U.S. National Science Foundation (NSF), researchers from the Palo Alto Veterans Institute for Research and Stanford University are leveraging microgravity to develop a tissue-engineered model of sarcopenia, the age-related deterioration of skeletal muscle. If validated, the model could be used to study the progression of muscle deterioration and serve as a valuable platform for testing potential treatments for sarcopenia and related muscle disease.

Sarcopenia is a common but serious condition that contributes to frailty and poor health outcomes in older adults. Its association with old age, however, means that the physiological markers that define sarcopenia can take years to develop, said principal investigator Ngan Huang, assistant professor of cardiothoracic surgery at Stanford and principal investigator for the Veterans Affairs Palo Alto Health Care System.

"Because it's such a slow process, it makes it really difficult to study the efficacy of drugs that could be used for treating sarcopenia," Huang said. "Clinical trials can take decades, which may not be feasible."

Low Earth orbit offers a promising research environment for muscular disease research because it can accelerate the process. In the absence of resistive exercise, exposure to microgravity is known to result in the loss of muscle mass during spaceflight. Using a specially engineered skeletal muscle platform, Huang's team plans to harness that effect in the hopes of inducing sarcopenia-like symptoms in sample tissues onboard the ISS at a rate much faster than on Earth.

"Instead of taking decades, it could take potentially days or weeks in microgravity," Huang said. "That could provide a significant advantage because microgravity could be used to study sarcopenia in a much faster time frame."

Since 2017, NSF has partnered with the ISS U.S. National Laboratory on an annual solicitation to fund tissue engineering research on the space station. Huang's investigation is the first NSF-funded tissue engineering project to launch to the orbiting laboratory as part of this collaboration.

One of the defining characteristics of sarcopenia is the impaired ability to form new muscle fibers. To mimic the formation of muscle fibers in space, Huang's team is using an engineered tissue platform that involves seeding a collagen scaffold with muscle progenitor cells. The platform, developed in partnership with ISS National Lab Commercial Service Provider BioServe Space Technologies, guides the cells to align in parallel as they mature, forming organized precursors of muscle fibers known as myotubes.

Once the samples return to Earth, they will be tested for impaired myotube formation, as well as various genetic and protein markers associated with sarcopenia.

Speeding the development of sarcopenia biomarkers in a model tissue will also reduce the time needed to test the effectiveness of treatment options, which could open the door to rapid clinical trials, Huang said. As a proof of concept, her team will also test whether insulin-like growth factor-1, a growth factor that is known to stimulate the formation of muscle myotubes, can reverse signs of degradation in samples grown in space using the same engineered muscle platform.

If successful, Huang's experiment could eventually pave the way for improvements in treatments not only for sarcopenia but also for other kinds of slow-onset wasting diseases.

"This research project is another wonderful example of how NSF's partnership with?CASIS opens opportunities for new research directions that leverage the ISS National Lab to benefit life on Earth," said Richard Dickinson, division director of the NSF Division of Chemical, Bioengineering, Environmental and Transport Systems.


Related Links
Tissue Engineered Muscle as a Novel Platform to Study Sarcopenia
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
DARPA to develop novel therapeutics for multi-drug resistant microbial infections
Washington DC (SPX) Aug 06, 2021
DARPA has selected three performer teams to support the Harnessing Enzymatic Activity for Lifesaving Remedies (HEALR) program. Groups from Yale University, University of Washington, and Broad Institute plan to utilize a new therapeutic approach and novel protein degradation strategies/modalities to permit a flexible and rapid response for targeting emerging microbial threats. These research teams plan to leverage different approaches to tackle these challenges: + The Yale team will focus on ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Boeing delays key uncrewed test flight to ISS

Nauka Module incident caused by software failure

Russia to stop using ISS by 2028, create own National Space Station

ISSRDC to highlight opportunities within biomanufacturing in space

SPACE MEDICINE
Finding the cause of a fatal problem in rocket engine combustors

Rocket tanks of carbon fibre reinforced plastic proven possible

US watchdog upholds SpaceX's Moon lander contract

NASA performs field test of 3D imaging system for descent and landing

SPACE MEDICINE
Aviation Week awards NASA's Ingenuity Mars Helicopter with laureate

North-By-Northwest for Ingenuity's 11th Flight

Science in motion for ExoMars twin rover

Earthly rocks point way to water hidden on Mars

SPACE MEDICINE
Shanxi company helps astronauts keep fit in space

China's space propaganda blitz endures at slick new planetarium

How Chinese astronauts stay healthy in space

China's five-star red flag flies proudly on red planet

SPACE MEDICINE
Next batch of OneWeb satellites set to launch August 20

Iridium granted trio of regulatory approvals in Japan

Inmarsat unveils the communications network of the future

Space company in search for professionals

SPACE MEDICINE
Experiment bound for Space Station turns down the heat

DARPA selects research teams to enable quantum shift in spectrum sensing

End tax breaks for gaming firms, says Chinese state media

The truth about space traffic management

SPACE MEDICINE
Small force, big effect: How the planets could influence the sun

Astronomers show how planets form in binary systems without getting crushed

Galileo Project to search for ET artifacts in galactic space

From the sun to the stars: A journey of exoplanet discovery begins

SPACE MEDICINE
Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission

Juno tunes into Jovian radio triggered by Jupiter's volcanic moon Io

Ride with Juno as it flies past Jupiter and Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.