. 24/7 Space News .
TIME AND SPACE
Tiny particles work together to do big things
by Anne Trafton for MIT News
Boston MA (SPX) Oct 17, 2022

MIT chemical engineers have shown that specialized particles can oscillate together, demonstrating a phenomenon known as emergent behavior.

Taking advantage of a phenomenon known as emergent behavior in the microscale, MIT engineers have designed simple microparticles that can collectively generate complex behavior, much the same way that a colony of ants can dig tunnels or collect food.

Working together, the microparticles can generate a beating clock that oscillates at a very low frequency. These oscillations can then be harnessed to power tiny robotic devices, the researchers showed.

"In addition to being interesting from a physics point of view, this behavior can also be translated into an on-board oscillatory electrical signal, which can be very powerful in microrobotic autonomy. There are a lot of electrical components that require such an oscillatory input," says Jingfan Yang, a recent MIT PhD recipient and one of the lead authors of the new study.

The particles used to create the new oscillator perform a simple chemical reaction that allows the particles to interact with each other through the formation and bursting of tiny gas bubbles. Under the right conditions, these interactions create an oscillator that behaves similar to a ticking clock, beating at intervals of a few seconds.

"We're trying to look for very simple rules or features that you can encode into relatively simple microrobotic machines, to get them to collectively do very sophisticated tasks," says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT.

Strano is the senior author of the new paper, which appears in Nature Communications. Along with Yang, Thomas Berrueta, a Northwestern University graduate student advised by Professor Todd Murphey, is a lead author of the study.

Collective behavior
Demonstrations of emergent behavior can be seen throughout the natural world, where colonies of insects such as ants and bees accomplish feats that a single member of the group would never be able to achieve.

"Ants have minuscule brains and they do very simple cognitive tasks, but collectively they can do amazing things. They can forage for food and build these elaborate tunnel structures," Strano says. "Physicists and engineers like myself want to understand these rules because it means we can make tiny things that collectively do complex tasks."

In this study, the researchers wanted to design particles that could generate rhythmic movements, or oscillations, with a very low frequency. Until now, building low-frequency micro-oscillators has required sophisticated electronics that are expensive and difficult to design, or specialized materials with complex chemistries.

The simple particles that the researchers designed for this study are discs as small as 100 microns in diameter. The discs, made from a polymer called SU-8, have a platinum patch that can catalyze the breakdown of hydrogen peroxide into water and oxygen.

When the particles are placed at the surface of a droplet of hydrogen peroxide on a flat surface, they tend to travel to the top of the droplet. At this liquid-air interface, they interact with any other particles found there. Each particle produces its own tiny bubble of oxygen, and when two particles come close enough that their bubbles interact, the bubbles pop, propelling the particles away from each other. Then, they begin forming new bubbles, and the cycle repeats over and over.

"One particle by itself stays still and doesn't do anything interesting, but through teamwork, they can do something pretty amazing and useful, which is actually a difficult thing to achieve at the microscale," Yang says.

The researchers found that two particles could make a very reliable oscillator, but as more particles were added, the rhythm would get thrown off. However, if they added one particle that was slightly different from the others, that particle could act as a "leader" that reorganized the other particles back into a rhythmic oscillator.

This leader particle is the same size as the other particles but has a slightly larger platinum patch, which enables it to create a larger oxygen bubble. This allows this particle to move to the center of the group, where it coordinates the oscillations of all of the other particles. Using this approach, the researchers found they could create oscillators containing up to at least 11 particles.

Depending on the number of particles, this oscillator beats at a frequency of about 0.1 to 0.3 hertz, which is on the order of the low-frequency oscillators that govern biological functions such as walking and the beating of the heart.

Oscillating current
The researchers also showed that they could use the rhythmic beating of these particles to generate an oscillating electric current. To do that, they swapped out the platinum catalyst for a fuel cell made of platinum and ruthenium or gold. The mechanical oscillation of the particles rhythmically alters the resistance from one end of the fuel cell to the other, which converts the voltage generated by the fuel cell to an oscillating current.

"Like a dripping faucet, catalytic microdiscs floating at a liquid interface use a chemical reaction to drive the periodic growth and release of gas bubbles. The study shows how these oscillatory dynamics can be harnessed for mechanical actuation and electrochemical signaling relevant to microrobotics," says Kyle Bishop, a professor of chemical engineering at Columbia University, who was not involved in the study.

Generating an oscillating current instead of a constant one could be useful for applications such as powering tiny robots that can walk. The MIT researchers used this approach to show that they could power a microactuator, which was previously used as legs on a tiny walking robot developed by researchers at Cornell University. The original version was powered by a laser that had to be alternately pointed at each set of legs, to manually oscillate the current. The MIT team showed that the on-board oscillating current generated by their particles could drive the cyclic actuation of the microrobotic leg, using a wire to transfer the current from the particles to the actuator.

"It shows that this mechanical oscillation can become an electrical oscillation, and then that electrical oscillation can actually power activities that a robot would do," Strano says.

One possible application for this kind of system would be to control swarms of tiny autonomous robots that could be used as sensors to monitor water pollution.

The research was funded in part by the U.S. Army Research Office, the U.S. Department of Energy, and the National Science Foundation.


Related Links
Department of Chemical Engineering
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Revealing the mysteries of the universe under the skin of an atomic nucleus
Gothenburg, Sweden (SPX) Oct 13, 2022
Massive neutron stars colliding in space are thought to be able to create precious metals such as gold and platinum. The properties of these stars are still an enigma, but the answer may lie beneath the skin of one of the smallest building blocks on Earth - an atomic nucleus of lead. Getting the nucleus of the atom to reveal the secrets of the strong force that governs the interior of neutron stars has proven difficult. Now a new computer model from Chalmers University of Technology, Sweden, can provide ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Crew-4 astronauts safely splash down in Atlantic

Crew-4 astronauts splash down after 170 days in space

Next-generation spacesuits on drawing board for NASA moon mission

Cables, tie-wraps and no step

TIME AND SPACE
Musk says cannot fund Starlink in Ukraine indefinitely

Astra announces spacecraft engine contract with Maxar Technologies

NASA's Mars mission shields up for tests

NASA's Crew-5 mission casts long exposure light beam

TIME AND SPACE
Packing up at the Canaima drill site: Sols 3626-3627

Things that go bump in the night on Mars!

Sols 3621-3622: Planetary Power Puzzle

NASA's InSight waits out dust storm

TIME AND SPACE
Mengtian space lab fueled ahead of upcoming launch

Tiangong space station marks key step in assembly

China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

TIME AND SPACE
SpaceX announces Starlink Internet service on airplanes

Phase Four unveils game changing engine for LEO constellations

Amazon's Project Kuiper will now launch with ULA rockets

Eutelsat strategy update on the proposed combination with OneWeb

TIME AND SPACE
Hounded at home, China's video game firms welcomed in Europe

Europe's police keep wary eye on threat from 3D-printed guns

NASA awards contracts to assess near-space communications capabilities

Heat-proof chaotic carbides could revolutionize aerospace technology

TIME AND SPACE
Blue Skies Space satellite will monitor how energy released by stars impacts exoplanet habitability

Heaviest element yet detected in an exoplanet atmosphere

Broccoli gas: A better way to find life in space

JPL developing more tools to help search for life in deep space

TIME AND SPACE
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.