. 24/7 Space News .
SPACE MEDICINE
Tiny biohybrid robots for intelligent drug delivery
by Staff Writers
Beijing, China (SPX) Mar 07, 2022

Scientists from Beijing Institute of Technology reviewed progress and perspectives of biohybrid micro- and nanorobots for intelligent drug delivery.

A review paper by scientists at the Beijing Institute of Technology summarized recent advancements in use of intelligent biohybrid micro- and nanorobots for human medical applications. The new review paper, published on Feb. 10 in the journal Cyborg and Bionic Systems, provided an overview of how tiny robots with living parts are designed and fabricated to perform tasks such as effectively delivering drugs to body tissues.

"These biohybrid micro- and nanorobots are being widely investigated in the field of smart drug delivery for precision therapy of cancer and other diseases," explained study author Jinhua Li , a professor at the Beijing Institute of Technology.

The emerging field of micro robotics encompasses research and development of robots on a micron size scale for real-world applications. "This emerging research field has received ever-increasing attention, especially after molecular machines were selected as the topic of the Nobel Prize in Chemistry 2016," said study authors. The biohybrid microrobots they reviewed have both living biological components and nonliving components; typically, an artificial carrier swims or crawls to transport living components to where they perform tasks in the human body.

Biohybrid micro- and nanorobots promise to revolutionize medicine because they can be remote controlled to perform a biochemical operation with high precision. Besides cancer treatment, these robots could play roles in other small-scale tasks such as microsurgery of cells, assisted fertilization, and tissue engineering. "The application scenarios of biohybrid micro- and nanorobots can be expanded from currently focused cancer treatment to many other research fields," said Li.

The newly published review analyzed the potential uses of various biohybrid robots. They range from about 1 um to about 20?um in size, with the variation largely stemming from their components. For example, on the small (nano) end, a DNA-based robot can deliver the blood-clotting agent thrombin to stop the flow of blood to a cancer tumor cell. On the larger (micro) end, a sperm-based robot can deliver the anticoagulant heparin to treat a circulatory system disease.

The study authors grouped biohybrid micro- and nanorobots into six functional categories: leukocyte-based; erythrocyte-based; microorganism-based; cytomembrane-based; DNA/enzyme-based; and sperm-based. Platelet microrobots, for example, have a long circulation time in the bloodstream that allows them to accumulate and deliver drugs to a targeted tissue. Leukocyte microrobots, built of immune cells, have the unique ability to chemotactically navigate to an infection to deliver drugs.

Looking forward, the team envision incorporating novel biological components into biohybrid robots. For example, when a robot is introduced, one challenge is to overcome the human immune response. If bacteria already in a person's body were instead harnessed to perform therapeutic tasks, that could alleviate an immune response as well as the risk of introducing pathogens.

Another challenge is the efficiency of manufacturing the tiny, nonliving carriers. Future research and development will likely yield novel ways of transporting the biological parts around, such as magnetic fields or light; advancements in techniques for fabricating the nonliving parts; and enhanced imaging techniques such as MRIs and magnetic particle imaging. Researchers expect biohybrid robots to become even more sophisticated and specialized for carrying out complex medical tasks.

"The research field of biohybrid micro- and nanorobots for drug delivery is still in its infancy," said Li, explaining that most studies have been done in the laboratory with few studies in humans. Biohybrid robots could be useful in many aspects of medicine, including cell microsurgery, gene therapy, and engineering to repair or replace damaged tissues. The review paper calls for researchers, medical professionals, engineers, and other experts to collaboratively marshal the research on biohybrid micro robots into practical applications in clinical settings.

Authors of the paper include Jinhua Li, Lukas Dekanovsky, Bahareh Khezri, Bing Wu, Huaijuan Zhou, and Zdenek Sofer.

The European Structural and Investment Funds, OP RDE-funded project "CHEMFELLS IV"; the Beijing Institute of Technology Teli Young Fellow Program; the Czech Science Foundation; and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement.

Research Report: "Biohybrid Micro- and Nanorobots for Intelligent Drug Delivery"


Related Links
Beijing Institute of Technology
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
Rebooting evolution
Perth, Australia (SPX) Feb 25, 2022
The building blocks of life-saving therapeutics could be developed in days instead of years thanks to new software that simulates evolution. Proseeker is the name of a new computational tool that mimics the processes of natural selection, producing proteins that can be used for a range of medicinal and household uses. The enzymes in your laundry detergent, the insulin in your diabetes medication or the antibodies used in cancer therapy are currently made in the laboratory using a painstaking ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
'TechWorks' brings dreams of Jordan inventors to life

How to reach a tumbling target in space

NASA exploring ways to keep ISS afloat without Russian help: official

Astronaut Matthias Maurer marks his first 100 days in space

SPACE MEDICINE
Russia stops deliveries of rocket engines to US, Roscosmos Head Says

First Platforms are Retracted Ahead of Artemis I First Rollout to Launch Pad

SpaceX launches 47 Starlink satellites from Florida

NASA Announces Launch Options for 2022 Student Launch Competition

SPACE MEDICINE
How scientists designed the aerodynamic configuration of Mars ascent vehicles?

Sols 3401-3402: Sand, Boulders and Ridges, Oh My

Russian-European Mars rover 'very unlikely' to launch this year

Sols 3398-3400: The Road Ahead

SPACE MEDICINE
China's space station to host 6 astronauts by end of 2022

Tiangong scheduled for completion this year

China establishes deep space exploration laboratory

China to make 6 human spaceflights, rocket's maiden flight in 2022: blue book

SPACE MEDICINE
SpaceX plans another Starlink launch as Ukraine uses the service during conflict

Satellite operator OneWeb suspends Baikonur launches

Airbus Ventures invests in CesiumAstro's Series B

Russian move to hold up OneWeb launch may affect entire space industry

SPACE MEDICINE
Chile: Copper, quakes and inequality

The untapped nitrogen reservoir

Tiny switches give solid-state LiDAR record resolution

'Chemical recycling' of plastic slammed by environmental group

SPACE MEDICINE
Expedition to highest active volcano unearths clues about life on other worlds

Ice-free in icy worlds

What's happening in the depths of distant worlds?

New astrobiology research predicts life 'as we don't know it'

SPACE MEDICINE
NASA starts building Europa Clipper to investigate icy, ocean moon of Jupiter

New Horizons team puts names to the places on Arrokoth

NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter

Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.