. 24/7 Space News .
SHAKE AND BLOW
Timing of Earth's biggest earthquakes follows a 'devil's staircase' pattern
by Brooks Hays
Washington DC (UPI) Apr 14, 2020

stock illustration

The timing of large, shallow earthquakes across the globe follows a mathematical pattern known as the devil's staircase, according to a new study of seismic sequences.

Previously, scientists and their models have theorized that earthquake sequences happen periodically or quasi-periodically, following cycles of growing tension and release. Researchers call it the elastic rebound model. In reality, periodic earthquake sequences are surprisingly rare.

Instead, scientists found global earthquake sequences tend to occur in clusters -- outbursts of seismic events separated by long but irregular intervals of silence.

The findings, published this week in the journal Bulletin of the Seismological Society of America, suggest large earthquakes increase the probability of subsequent seismic events.

Previous models failed to account for the interconnected nature of global fault systems. Seismic event don't occur in isolation. Each major quake alters the dynamics of other fault systems.

While the research suggests large quake sequences are "burstier" than previously thought, they remain as unpredictable as ever. The gaps between bursts are irregular, making it exceedingly difficult to anticipate the next cluster.

"Mathematically described as the devil's staircase, such temporal patterns are a fractal property of nonlinear complex systems, in which a change of any part -- e.g., rupture of a fault or fault segment -- could affect the behavior of the whole system," scientists wrote in their paper.

The devil's staircase pattern is also evidence in Earth's sedimentation sequences and reversals of the planet's magnetic field, as well as crustal uplift and erosion rates.

In addition to ignoring the interconnected nature of fault systems, most previous earthquake pattern models focused on too few earthquakes across time frames that were too short and regions that were too small. As a result, earlier models failed to pick up on the staircase pattern.

When models fail to take a wide-angle view of earthquake sequences -- instead, looking at seismic patterns over short periods of time -- it becomes impossible to tell whether a series of seismic events occurred within a single cluster or spanned two clusters and an interval of silence.

"For this same reason, we need to be cautious when assessing an event is 'overdue' just because the time measured from the previous event has passed some 'mean recurrence time' based an incomplete catalog," researchers wrote in their paper.

While scientists still aren't sure of the mechanisms that dictate the irregularity of the gaps between earthquake clusters, they hope that by studying the influence of major earthquakes on other fault systems via stress transfer, they can better predict how outbursts of large, shallow earthquakes will play out -- knowledge that could offer advanced warnings to vulnerable populations.


Related Links
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SHAKE AND BLOW
New NASA radar looks to monitor volcanoes and earthquakes from space
Greenbelt MD (SPX) Apr 03, 2020
Instead of looking up to the sky for bright bursts of fiery color, a research team spent Fourth of July 2018 peering down at fiery globs of molten lava from a sky-diving airplane. Bolted to their plane was a new NASA instrument designed to detect each time the volcano took a breath, as its caldera swelled and deflated. The team flew multiple flights above the Kilauea Volcano in Hawaii Volcanoes National Park from July 3 to 5, 2018, to demonstrate how a new instrument could pave the way for a futur ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Insects, seaweed and lab-grown meat could be the foods of the future

NASA astronaut scheduled for launch to space station Thursday

No press, no family: Space crew set for launch during pandemic

China becomes world's top patent filer: UN

SHAKE AND BLOW
Dragon returns to Earth with science payloads from ISS

SpaceX's Dragon splashes down after trip to space station

NASA ground, marine teams integral to moving SLS rocket to pad

NASA, SpaceX Simulate Upcoming Crew Mission with Astronauts

SHAKE AND BLOW
Choosing rocks on Mars to bring to Earth

NASA's Perseverance Mars rover gets its wheels and air brakes

Bacteria in rock deep under sea inspire new search for life on Mars

The man who wanted to fly on Mars

SHAKE AND BLOW
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

SHAKE AND BLOW
OneWeb goes bankrupt

Trump issues Executive Order supporting Space Resources utlization

Space missions return to science

China to launch communication satellite for Indonesia

SHAKE AND BLOW
Virus lockdown boosts South African virtual safari tours

Now metal surfaces can be instant bacteria killers

Scientists synthesize world's most complex microparticle

Making stronger concrete with 'sewage-enhanced' steel slag

SHAKE AND BLOW
Salmon parasite is world's first non-oxygen breathing animal

Humans are not the first to repurpose CRISPR

Sulfur 'spices' alien atmospheres

Disinfection for planetary protection

SHAKE AND BLOW
Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.