. 24/7 Space News .
STELLAR CHEMISTRY
The science of spin as asteroseismologists confirm older stars rotate faster than expected
by Staff Writers
Birmingham UK (SPX) Apr 23, 2021

"Sound waves trapped inside stars cause them to oscillate at particular frequencies. These vibrations are visible on the surface, and can be measured by astronomers using space telescopes. When a star is rotating these oscillation frequencies change slightly, making it possible to measure the star's rotation by looking at how it's surface changes over time. The study of these vibrations (called asteroseismology) can also be used to measure properties such as a star's mass and age. This lets us understand in more detail how the rotation and activity of stars evolves over time, improving our understanding of stars, exoplanetary systems and our own solar system"

Stars spin faster than expected as they age according to a new study led by scientists at the University of Birmingham which uses asteroseismology to shed new light on this emerging theory.

All stars, like the Sun, are born spinning. As they grow older, their spin slows down due to magnetic winds in a process called 'magnetic braking'. Research published in 2016 by scientists at Carnegie Observatories delivered the first hints that stars at a similar stage of life as the Sun were spinning faster than magnetic braking theories predicted.

The results from this study were based on a method in which scientists pinpoint dark spots on the surface of stars and track them as they move with the stars' spin. While the method has proven robust for measuring spin in younger stars, however, older stars have fewer star spots, which has made the effects of this "weakened" magnetic braking on these stars hard to confirm.

In a new study, published in Nature Astronomy, researchers at the University of Birmingham used a different approach to confirm that older stars do, in fact, appear to rotate faster than expected. The team used asteroseismology to calculate how the star is rotating. This relatively new field of study enables scientists to measure the oscillations caused by sound waves trapped inside the star. By measuring the different characteristics of these waves, they can reveal different characteristics of stars, such as their size or age.

In this study, the team measured the modes, or the frequencies, of the sound waves produced by the star's oscillation. As the star spins, these modes split into different frequencies.

This can be imagined, the author's say, as the sound of two ambulances stood still on a roundabout compared to when they are driving in circles. By measuring these frequencies, it is possible to calculate the rate of spin in a way that is possible for both young and old stars.

Lead author on the paper, Dr Oliver Hall, said: "Although we've suspected for some time that older stars rotate faster than magnetic braking theories predict, these new asteroseismic data are the most convincing yet to demonstrate that this 'weakened magnetic braking' is actually the case. Models based on young stars suggest that the change in a star's spin is consistent throughout their lifetime, which is different to what we see in these new data."

One aspect the researchers believe could be key to the change in momentum loss, is changes to the star's magnetic field. Understanding how the magnetic field interacts with rotation will be an important area of future study, and is being worked on by authors on the paper.

The results could also shed light on our own star's activity over the next several billion years, explains co-author Dr Guy Davies: "These new findings demonstrate that we still have a lot to learn about the future of our own Sun as well as other stars.

This work helps place in perspective whether or not we can expect reduced solar activity and harmful space weather in the future. To answer these questions we need better models of solar rotation, and this work takes an important step towards improving the models and supplying the data needed to test them."

Research paper


Related Links
University Of Birmingham
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Outback radio telescope discovers dense, spinning, dead star
Perth, Australia (SPX) Apr 22, 2021
Astronomers have discovered a pulsar - a dense and rapidly spinning neutron star sending radio waves into the cosmos - using a low-frequency radio telescope in outback Australia. The pulsar was detected with the Murchison Widefield Array (MWA) telescope, in Western Australia's remote Mid West region. It's the first time scientists have discovered a pulsar with the MWA but they believe it will be the first of many. The finding is a sign of things to come from the multi-billion-dollar Sq ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Stone skipping techniques can improve reentry of space vehicles

Alpha: Second Space Station mission for ESA's Thomas Pesquet begins

First Module of Russia's New Space Station to Be Ready for Launch in 2025, Roscosmos Announces

How Scientists are using the ISS to study Earth's climate

STELLAR CHEMISTRY
Space Launch System Core Stage heads to Kennedy Space Center

SpaceX Crew-2 astronauts enter International Space Station

SpaceX capsule Endeavour docks at ISS

Georgia Tech shares $15M from NASA to advance deep space exploration

STELLAR CHEMISTRY
Mars has right ingredients for present-day microbial life beneath its surface, study finds

Icy clouds could have kept early Mars warm enough for rivers and lakes, study finds

Mars' changing habitability recorded by ancient dune fields in Gale crater

Seismicity on Mars full of surprises, in first continuous year of data

STELLAR CHEMISTRY
China ready launch new space station core module

To Mars and beyond, as China's cosmic journey continues

China's space-tracking ship departs on new mission in Pacific

China Orbiting 400 Satellites, Heading for 1,000 by 2030, US Space Command Chief Says

STELLAR CHEMISTRY
Russia launches new batch of UK telecom satellites into space

ESA awards Euroconsult and ESPI with study on the future of European space transportation

Ozmens' SNC Launches Sierra Space, an independent commercial space company

OneSat Final Design Review successfully achieved

STELLAR CHEMISTRY
Arrival of world-first test facility

Accion Systems set for launch of two TILE 2 in-space propulsion systems

Radar satellites can better protect against bushfires and floods

"Molecular Tomographer" algorithm maps gene expression in space

STELLAR CHEMISTRY
NASA's Webb to study young exoplanets on the edge

When the atmosphere isn't enough

As different as day and night

Researchers identify five double star systems potentially suitable for life

STELLAR CHEMISTRY
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.