24/7 Space News
SPACE MEDICINE
The psychological barrier of deep space exploration
illustration only
ADVERTISEMENT
     
The psychological barrier of deep space exploration
by Nick Kanas | Professor Emeritus of Psychiatry, UCSF
San Francisco CA (SPX) Mar 11, 2024

Within the next few decades, NASA aims to land humans on the Moon, set up a lunar colony and use the lessons learned to send people to Mars as part of its Artemis program. While researchers know that space travel can stress space crew members both physically and mentally and test their ability to work together in close quarters, missions to Mars will amplify these challenges. Mars is far away - millions of miles from Earth - and a mission to the red planet will take two to two and a half years, between travel time and the Mars surface exploration itself.

As a psychiatrist who has studied space crew member interactions in orbit, I'm interested in the stressors that will occur during a Mars mission and how to mitigate them for the benefit of future space travelers.

Delayed communications
Given the great distance to Mars, two-way communication between crew members and Earth will take about 25 minutes round trip. This delayed contact with home won't just hurt crew member morale. It will likely mean space crews won't get as much real-time help from Mission Control during onboard emergencies.

Because these communications travel at the speed of light and can't go any faster, experts are coming up with ways to improve communication efficiency under time-delayed conditions. These solutions might include texting, periodically summarizing topics and encouraging participants to ask questions at the end of each message, which the responder can answer during the next message.

Autonomous conditions
Space crew members won't be able to communicate with Mission Control in real time to plan their schedules and activities, so they'll need to conduct their work more autonomously than astronauts working on orbit on the International Space Station.

Although studies during space simulations on Earth have suggested that crew members can still accomplish mission goals under highly autonomous conditions, researchers need to learn more about how these conditions affect crew member interactions and their relationship with Mission Control.

For example, Mission Control personnel usually advise crew members on how to deal with problems or emergencies in real time. That won't be an option during a Mars mission.

To study this challenge back on Earth, scientists could run a series of simulations where crew members have varying degrees of contact with Mission Control. They could then see what happens to the interactions between crew members and their ability to get along and conduct their duties productively.

Crew member tension
Being confined with a small group of people for a long period of time can lead to tension and interpersonal strife.

In my research team's studies of on-orbit crews, we found that when experiencing interpersonal stress in space, crew members might displace this tension by blaming Mission Control for scheduling problems or not offering enough support. This can lead to crew-ground misunderstandings and hurt feelings.

One way to deal with interpersonal tension on board would be to schedule time each week for the crew members to discuss interpersonal conflicts during planned "bull sessions." We have found that commanders who are supportive can improve crew cohesion. A supportive commander, or someone trained in anger management, could facilitate these sessions to help crew members understand their interpersonal conflicts before their feelings fester and harm the mission.

Time away from home
Spending long periods of time away from home can weigh on crew members' morale in space. Astronauts miss their families and report being concerned about the well-being of their family members back on Earth, especially when someone is sick or in a crisis.

Mission duration can also affect astronauts. A Mars mission will have three phases: the outbound trip, the stay on the Martian surface and the return home. Each of these phases may affect crew members differently. For example, the excitement of being on Mars might boost morale, while boredom during the return may sink it.

The disappearing-Earth phenomenon
For astronauts in orbit, seeing the Earth from space serves as a reminder that their home, family and friends aren't too far away. But for crew members traveling to Mars, watching as the Earth shrinks to an insignificant dot in the heavens could result in a profound sense of isolation and homesickness.

Having telescopes on board that will allow the crew members to see Earth as a beautiful ball in space, or giving them access to virtual reality images of trees, lakes and family members, could help mitigate any disappearing-Earth effects. But these countermeasures could just as easily lead to deeper depression as the crew members reflect on what they're missing.

Planning for a Mars mission
Researchers studied some of these issues during the Mars500 program, a collaboration between the Russian and other space agencies. During Mars500, six men were isolated for 520 days in a space simulator in Moscow. They underwent periods of delayed communication and autonomy, and they simulated a landing on Mars.

Scientists learned a lot from that simulation. But many features of a real Mars mission, such as microgravity, and some dangers of space - meteoroid impacts, the disappearing-Earth phenomenon - aren't easy to simulate.

Planned missions under the Artemis program will allow researchers to learn more about the pressures astronauts will face during the journey to Mars.

For example, NASA is planning a space station called Gateway, which will orbit the Moon and serve as a relay station for lunar landings and a mission to Mars. Researchers could simulate the outbound and return phases of a Mars mission by sending astronauts to Gateway for six-month periods, where they could introduce Mars-like delayed communication, autonomy and views of a receding Earth.

Researchers could simulate a Mars exploration on the Moon by having astronauts conduct tasks similar to those anticipated for Mars. This way, crew members could better prepare for the psychological and interpersonal pressures that come with a real Mars mission. These simulations could improve the chances of a successful mission and contribute to astronaut well-being as they venture into space.

Related Links
Psychiatry, University of California, San Francisco
Space Medicine Technology and Systems

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE MEDICINE
Just add AI for expert astronaut ultrasound
Paris (ESA) Mar 07, 2024
Ultrasound devices are commonplace in modern orbital medical kits, helping to facilitate rapid diagnoses of astronaut ailments or bodily changes. However it takes real-time guidance from experts on the ground to acquire medically useful ultrasound images. Once astronauts travel to the Moon or further into the Solar System such guidance will no longer be practical due to the time delay involved. A new ESA-led project aims to leverage AI and Machine Learning so that astronauts can perform close to expert ... read more

ADVERTISEMENT
ADVERTISEMENT
SPACE MEDICINE
Astroforensics: Pioneering Blood Behavior Research for Space Crime Solving

Spacesuits need a major upgrade for the next phase of exploration

NASA to accept astronaut applications through April 2

Reps. Chu and Bacon Spearhead Bipartisan Effort with Planetary Science Caucus Re-Launch

SPACE MEDICINE
Karman Space and Defense boosts ULA's Vulcan on Its Maiden flight

NASA Helps Emerging Space Companies 'Take the Heat'

Orbit Fab Announces Strategic Leadership Reorganization to Propel Space Refueling Innovation

SpaceX tentatively sets third Starship test flight for March 14

SPACE MEDICINE
Study reveals potential for life's building blocks from Mars' ancient atmosphere

Little Groundwater Recharge in Ancient Mars Aquifer, According to New Models

Three years later, search for life on Mars continues

Mining Into Mineral King: Sols 4110-4111

SPACE MEDICINE
Chang'e 6 and new rockets highlight China's packed 2024 space agenda

Long March 5 deploys Communication Technology Demonstrator 11 satellite

Shenzhou 17 astronauts complete China's first in-space repair job

Tiangong Space Station's Solar Wings Restored After Spacewalk Repair by Shenzhou XVII Team

SPACE MEDICINE
Meridian Space Command establishes new HQ at Leicester's Space Innovation Hub

Sateliot unveils plan to expand its 5G IoT satellite constellation this year

SpaceX sends 46 Starlink satellites to orbit in consecutive launches

US and Australia signs Space Technology Safeguards Agreement

SPACE MEDICINE
Apex Launches Aries SN1, Marks a Milestone in Satellite Bus Production with Record-Breaking Build Time

Full Disclousre: Enhanced Radiation Warnings for Space Tourists

Globalsat Group enhances IoT offerings with Myriota SatCom technology

Terran Orbital shares in $45M NASA contract for technology enhancement

SPACE MEDICINE
Space research sheds new light on formation of planets

More Planets than Stars: Kepler's Legacy

Interstellar signal linked to aliens was actually just a truck

Scripps Research scientists reveal how first cells could have formed on Earth

SPACE MEDICINE
NASA's Europa Jupiter Mission will be packed with humanity's messages

UCF scientists use James Webb Space Telescope to uncover clues about Neptune's evolution

New moons of Uranus and Neptune announced

NASA's New Horizons Detects Dusty Hints of Extended Kuiper Belt

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.